Line 4,932:
Line 4,932:
Stated in terms of the conditional probability:
Stated in terms of the conditional probability:
−
: P(''b''|''m'') = P(''b'')
+
{| align="center" cellspacing="6" width="90%"
+
| <math>\operatorname{P}(\mathrm{b}|\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b})</math>
+
|}
From the definition of conditional probability:
From the definition of conditional probability:
−
: P(''b''|''m'') = P(''b'' & ''m'')/P(''m'')
+
{| align="center" cellspacing="6" width="90%"
+
| <math>\operatorname{P}(\mathrm{b}|\mathrm{m}) ~=~ \frac{\operatorname{P}(\mathrm{b}\mathrm{m})}{\operatorname{P}(\mathrm{m})}</math>
+
|}
Equivalently:
Equivalently:
−
: P(''b'' & ''m'') = P(''b''|''m'')P(''m'')
+
{| align="center" cellspacing="6" width="90%"
+
| <math>\operatorname{P}(\mathrm{b}\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b}|\mathrm{m})\operatorname{P}(\mathrm{m})</math>
+
|}
Thus we may derive the equivalent statement:
Thus we may derive the equivalent statement:
−
: P(''b'' & ''m'') = P(''b''|''m'')P(''m'') = P(''b'')P(''m'')
+
{| align="center" cellspacing="6" width="90%"
+
| <math>\operatorname{P}(\mathrm{b}\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b}|\mathrm{m})\operatorname{P}(\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b})\operatorname{P}(\mathrm{m})</math>
+
|}
And this, of course, is the definition of independent events, as applied to the event of being Black and the event of being a Man.
And this, of course, is the definition of independent events, as applied to the event of being Black and the event of being a Man.