Line 526: |
Line 526: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Evaluation Rule 1 | + | | |
− | | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | If f, g : U -> B
| + | |- style="height:50px; text-align:right" |
− | | + | | width="98%" | <math>\operatorname{Evaluation~Rule~1}</math> |
− | and u C U,
| + | | width="2%" | |
− | | + | |} |
− | then the following are equivalent:
| + | |- |
− | | + | | |
− | E1a. f(u) = g(u). :V1a
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | ::
| + | |- style="height:50px" |
− | E1b. f(u) <=> g(u). :V1b
| + | | width="2%" style="border-top:1px solid black" | |
− | ::
| + | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
− | E1c. (( f(u) , g(u) )). :V1c
| + | | width="84%" style="border-top:1px solid black" | <math>f, g ~:~ X \to \underline\mathbb{B}</math> |
− | :$1a
| + | |- style="height:50px" |
− | ::
| + | | |
− | E1d. (( f , g ))$(u). :$1b
| + | | <math>\text{and}\!</math> |
− | </pre> | + | | <math>x ~\in~ X</math> |
− | | + | |- style="height:50px" |
− | <br> | + | | |
− | | + | | <math>\text{then}\!</math> |
− | <pre> | + | | <math>\text{the following are equivalent:}\!</math> |
− | Evaluation Rule 1
| + | |} |
− | | + | |- |
− | If S, T are sentences
| + | | |
− | about things in the universe U,
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | | + | |- style="height:10px" |
− | f, g are propositions: U -> B,
| + | | width="2%" style="border-top:1px solid black" | |
− | | + | | width="14%" style="border-top:1px solid black" | |
− | and u C U,
| + | | width="64%" style="border-top:1px solid black" | |
− | | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
− | then the following are equivalent:
| + | |- style="height:40px" |
− | | + | | |
− | E1a. f(u) = g(u). :V1a | + | | <math>\operatorname{E1a.}</math> |
− | ::
| + | | <math>f(x) ~=~ g(x)</math> |
− | E1b. f(u) <=> g(u). :V1b | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{E1a~:~V1a}</math> |
− | ::
| + | |- style="height:20px" |
− | E1c. (( f(u) , g(u) )). :V1c | + | | colspan="3" | |
− | :$1a
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
− | ::
| + | |- style="height:40px" |
− | E1d. (( f , g ))$(u). :$1b | + | | |
− | </pre> | + | | <math>\operatorname{E1b.}</math> |
| + | | <math>f(x) ~\Leftrightarrow~ g(x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{E1b~:~V1b}</math> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{E1c.}</math> |
| + | | <math>\underline{((}~ f(x) ~,~ g(x) ~\underline{))}</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{E1c~:~V1c}</math></p> |
| + | <p><math>\operatorname{E1c~:~$1a}</math></p> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{E1d.}</math> |
| + | | <math>\underline{((}~ f ~,~ g ~\underline{))}^\$ (x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{E1d~:~$1b}</math> |
| + | |- style="height:10px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black" | |
| + | |} |
| + | |} |
| | | |
| <br> | | <br> |