Line 2,340: |
Line 2,340: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Fact 2.3
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:50px; text-align:center" |
| + | | style="width:80%" | |
| + | | style="width:20%; border-left:1px solid black" | <math>\operatorname{Fact~2.3}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:50px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="12%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| + | | width="66%" style="border-top:1px solid black" | <math>L ~\subseteq~ O \times S \times I</math> |
| + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
| + | |- style="height:50px" |
| + | | |
| + | | <math>\text{then}\!</math> |
| + | | <math>\text{the following are equivalent:}\!</math> |
| + | | style="border-left:1px solid black" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:10px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="12%" style="border-top:1px solid black" | |
| + | | width="66%" style="border-top:1px solid black" | |
| + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3a.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{cccl} |
| + | \operatorname{Der}^L |
| + | & = & \{ & (x, y) \in S \times I ~: \\ |
| + | & & & \begin{array}{ccl} |
| + | \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & ( & \upharpoonleft \operatorname{Den}^L x \upharpoonright (o) \\ |
| + | & = & \upharpoonleft \operatorname{Den}^L y \upharpoonright (o) \\ |
| + | & ) & \\ |
| + | \end{array} \\ |
| + | & & \} & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{F2.3a~:~R11a}</math> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3b.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{ccccl} |
| + | \upharpoonleft \operatorname{Der}^L \upharpoonright (x, y) |
| + | & = & \downharpoonleft & \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & & & & \begin{array}{cl} |
| + | ( & \upharpoonleft \operatorname{Den}^L x \upharpoonright (o) \\ |
| + | = & \upharpoonleft \operatorname{Den}^L y \upharpoonright (o) \\ |
| + | ) & \\ |
| + | \end{array} \\ |
| + | & & \downharpoonright & & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{F2.3b~:~R11d}</math> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3c.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{ccccl} |
| + | \upharpoonleft \operatorname{Der}^L \upharpoonright (x, y) |
| + | & = & \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & & & \begin{array}{ccl} |
| + | \downharpoonleft & ( & \upharpoonleft \operatorname{Den}^L x \upharpoonright (o) \\ |
| + | & = & \upharpoonleft \operatorname{Den}^L y \upharpoonright (o) \\ |
| + | & ) & \\ |
| + | \downharpoonright & & \\ |
| + | \end{array} \\ |
| + | & & & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{F2.3c~:~Log}</math></p> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3d.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{ccccl} |
| + | \upharpoonleft \operatorname{Der}^L \upharpoonright (x, y) |
| + | & = & \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & & & \begin{array}{ccl} |
| + | \downharpoonleft & ( & \upharpoonleft \operatorname{Den}^L \upharpoonright (o, x) \\ |
| + | & = & \upharpoonleft \operatorname{Den}^L \upharpoonright (o, y) \\ |
| + | & ) & \\ |
| + | \downharpoonright & & \\ |
| + | \end{array} \\ |
| + | & & & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{F2.3d~:~Def}</math> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3e.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{ccccl} |
| + | \upharpoonleft \operatorname{Der}^L \upharpoonright (x, y) |
| + | & = & \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & & & \begin{array}{cl} |
| + | \underline{((} & \upharpoonleft \operatorname{Den}^L \upharpoonright (o, x) \\ |
| + | , & \upharpoonleft \operatorname{Den}^L \upharpoonright (o, y) \\ |
| + | \underline{))} & \\ |
| + | \end{array} \\ |
| + | & & & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{F2.3e~:~Log}</math></p> |
| + | <p><math>\operatorname{F2.3e~:~D10b}</math></p> |
| + | |- style="height:20px" |
| + | | colspan="3" | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:100px" |
| + | | |
| + | | valign="top" | <math>\operatorname{F2.3f.}</math> |
| + | | valign="top" | |
| + | <math>\begin{array}{ccccl} |
| + | \upharpoonleft \operatorname{Der}^L \upharpoonright (x, y) |
| + | & = & \underset{o \in O}{\operatorname{Conj}} \\ |
| + | & & & \begin{array}{cl} |
| + | \underline{((} & \upharpoonleft L_{OS} \upharpoonright (o, x) \\ |
| + | , & \upharpoonleft L_{OS} \upharpoonright (o, y) \\ |
| + | \underline{))} & \\ |
| + | \end{array} \\ |
| + | & & & \\ |
| + | \end{array}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{F2.3f~:~D10a}</math> |
| + | |} |
| + | |} |
| | | |
− | If R c OxSxI,
| + | <br> |
− | | |
− | then the following are equivalent:
| |
− | | |
− | F2.3a. DerR = {<x, y> C SxI :
| |
− | Conj(o C O)
| |
− | {Den(R, x)}(o) =
| |
− | {Den(R, y)}(o)
| |
− | } :R11a
| |
− | ::
| |
− | F2.3b. {DerR} : SxI �> B
| |
− | :
| |
− | {DerR}(x, y) = [ Conj(o C O)
| |
− | {Den(R, x)}(o) =
| |
− | {Den(R, y)}(o)
| |
− | ] :R11d
| |
− | ::
| |
− | F2.3c. {DerR}(x, y) = Conj(o C O)
| |
− | [ {Den(R, x)}(o) =
| |
− | {Den(R, y)}(o)
| |
− | ] :Log
| |
− | ::
| |
− | F2.3d. {DerR}(x, y) = Conj(o C O)
| |
− | [ {DenR}(o, x) =
| |
− | {DenR}(o, y)
| |
− | ] :Def
| |
− | ::
| |
− | F2.3e. {DerR}(x, y) = Conj(o C O)
| |
− | (( {DenR}(o, x),
| |
− | {DenR}(o, y)
| |
− | )) :Log
| |
− | :D10b
| |
− | ::
| |
− | F2.3f. {DerR}(x, y) = Conj(o C O)
| |
− | (( {ROS}(o, x),
| |
− | {ROS}(o, y)
| |
− | )) :D10a
| |
− | </pre>
| |
| | | |
| ===Digression on Derived Relations=== | | ===Digression on Derived Relations=== |