Line 308: |
Line 308: |
| | | |
| </ol> | | </ol> |
| + | |
| + | ==Equation Sequences : Old Versions== |
| + | |
| + | {| align="center" cellpadding="4" style="text-align:left" width="90%" |
| + | | |
| + | |- |
| + | | <math>[| \downharpoonleft s \downharpoonright |]</math> |
| + | | <math>=\!</math> |
| + | | <math>[| F |]\!</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>F^{-1} (\underline{1})</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.</math> |
| + | |- |
| + | | |
| + | |} |
| + | |
| + | {| align="center" cellpadding="4" style="text-align:left" width="90%" |
| + | | |
| + | |- |
| + | | <math>[| F^\$ (p, q) |]</math> |
| + | | <math>=\!</math> |
| + | | <math>[| \underline{(}~p~,~q~\underline{)}^\$ |]</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>(F^\$ (p, q))^{-1} (\underline{1})</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ F^\$ (p, q)(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ p(x) + q(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ p(x) \neq q(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P + Q ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>P + Q ~\subseteq~ X</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>[|p|] + [|q|] ~\subseteq~ X</math> |
| + | |- |
| + | | |
| + | |} |
| + | |
| + | ==Equation Sequences : New Versions== |
| + | |
| + | {| align="center" cellpadding="4" style="text-align:left" width="90%" |
| + | | |
| + | |- |
| + | | <math>[| \downharpoonleft s \downharpoonright |]</math> |
| + | | <math>=\!</math> |
| + | | <math>[| F |]\!</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>F^{-1} (\underline{1})</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.</math> |
| + | |- |
| + | | |
| + | |} |
| + | |
| + | {| align="center" cellpadding="4" style="text-align:left" width="90%" |
| + | | |
| + | |- |
| + | | <math>[| F^\$ (p, q) |]</math> |
| + | | <math>=\!</math> |
| + | | <math>[| \underline{(}~p~,~q~\underline{)}^\$ |]</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>(F^\$ (p, q))^{-1} (\underline{1})</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ F^\$ (p, q)(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ p(x) + q(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ p(x) \neq q(x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>\{~ x \in X ~:~ x \in P + Q ~\}</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>P + Q ~\subseteq~ X</math> |
| + | |- |
| + | | |
| + | | <math>=\!</math> |
| + | | <math>[|p|] + [|q|] ~\subseteq~ X</math> |
| + | |- |
| + | | |
| + | |} |
| | | |
| ==Box Displays== | | ==Box Displays== |