| Line 433: |
Line 433: |
| | ==Equation Sequences : New Versions== | | ==Equation Sequences : New Versions== |
| | | | |
| − | {| align="center" cellpadding="4" style="text-align:left" width="90%" | + | {| align="center" cellpadding="8" width="90%" |
| − | | | + | | |
| − | |-
| + | <math>\begin{array}{lll} |
| − | | <math>[| \downharpoonleft s \downharpoonright |]</math>
| + | [| \downharpoonleft s \downharpoonright |] |
| − | | <math>=\!</math>
| + | & = & [| F |] |
| − | | <math>[| F |]\!</math>
| + | \\[6pt] |
| − | |-
| + | & = & F^{-1} (\underline{1}) |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\} |
| − | | <math>F^{-1} (\underline{1})</math>
| + | \\[6pt] |
| − | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\} |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\} |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}</math>
| + | \\[6pt] |
| − | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\} |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\} |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}</math>
| + | \\[6pt] |
| − | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\} |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\} |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}</math>
| + | \\[6pt] |
| − | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\} |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}</math>
| + | \\[6pt] |
| − | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\} |
| − | |
| + | \\[6pt] |
| − | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}. |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}</math>
| + | \end{array}</math> |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}</math>
| |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}</math>
| |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}</math>
| |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}</math>
| |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}</math>
| |
| − | |-
| |
| − | |
| |
| − | | <math>=\!</math>
| |
| − | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.</math>
| |
| − | |-
| |
| − | |
| |
| | |} | | |} |
| | | | |