Line 1,802:
Line 1,802:
</ol></ol>
</ol></ol>
−
For ease of reference, Table 12 summarizes the mechanics of these parsing rules.
+
For ease of reference, Table 13 summarizes the mechanics of these parsing rules.
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ '''Table 13. Algorithmic Translation Rules'''
+
|- style="background:whitesmoke"
+
|
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
+
| width="33%" | <math>\text{Sentence in PARCE}\!</math>
+
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
+
| width="33%" | <math>\text{Graph in PARC}\!</math>
+
|}
+
|-
+
|
+
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
+
| width="33%" | <math>\operatorname{Conc}^0</math>
+
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
+
| width="33%" | <math>\operatorname{Node}^0</math>
+
|-
+
| width="33%" | <math>\operatorname{Conc}_{j=1}^k s_j</math>
+
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
+
| width="33%" | <math>\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)</math>
+
|}
+
|-
+
|
+
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
+
| width="33%" | <math>\operatorname{Surc}^0</math>
+
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
+
| width="33%" | <math>\operatorname{Lobe}^0</math>
+
|-
+
| width="33%" | <math>\operatorname{Surc}_{j=1}^k s_j</math>
+
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
+
| width="33%" | <math>\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)</math>
+
|}
+
|}
<pre>
<pre>
−
Table 12. Algorithmic Translation Rules
−
o------------------------o---------o------------------------o
−
| | Parse | |
−
| Sentence in PARCE | --> | Graph in PARC |
−
o------------------------o---------o------------------------o
−
| | | |
−
| Conc^0 | --> | Node^0 |
−
| | | |
−
| Conc^k_j S_j | --> | Node^k_j Parse(S_j) |
−
| | | |
−
| Surc^0 | --> | Lobe^0 |
−
| | | |
−
| Surc^k_j S_j | --> | Lobe^k_j Parse(S_j) |
−
| | | |
−
o------------------------o---------o------------------------o
−
A "substructure" of a PARC is defined recursively as follows. Starting
A "substructure" of a PARC is defined recursively as follows. Starting
at the root node of the cactus C, any attachment is a substructure of C.
at the root node of the cactus C, any attachment is a substructure of C.