MyWikiBiz, Author Your Legacy — Friday November 08, 2024
Jump to navigationJump to search
563 bytes added
, 20:36, 19 January 2009
Line 1,774: |
Line 1,774: |
| Working from a structural description of the cactus language, or any suitable formal grammar for <math>\mathfrak{C} (\mathfrak{P}),</math> it is possible to give a recursive definition of the function called <math>\operatorname{Parse}</math> that maps each sentence in <math>\operatorname{PARCE} (\mathfrak{P})</math> to the corresponding graph in <math>\operatorname{PARC} (\mathfrak{P}).</math> One way to do this proceeds as follows: | | Working from a structural description of the cactus language, or any suitable formal grammar for <math>\mathfrak{C} (\mathfrak{P}),</math> it is possible to give a recursive definition of the function called <math>\operatorname{Parse}</math> that maps each sentence in <math>\operatorname{PARCE} (\mathfrak{P})</math> to the corresponding graph in <math>\operatorname{PARC} (\mathfrak{P}).</math> One way to do this proceeds as follows: |
| | | |
− | <pre> | + | <ol style="list-style-type:decimal"> |
− | 1. The parse of the concatenation Conc^k of the k sentences S_j,
| + | |
− | for j = 1 to k, is defined recursively as follows:
| + | <li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> |
| + | |
| + | <ol style="list-style-type:lower-alpha"> |
| + | |
| + | <li><math>\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.</math> |
| + | |
| + | <li> |
| + | <p>For <math>k > 0,\!</math></p> |
| + | |
| + | <p><math>\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li> |
| | | |
− | a. Parse(Conc^0) = Node^0.
| + | </ol> |
| | | |
− | b. For k > 0,
| + | <li>The parse of the surcatenation <math>\operatorname{Surc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> |
| | | |
− | Parse(Conc^k_j S_j) = Node^k_j Parse(S_j).
| + | <ol style="list-style-type:lower-alpha"> |
| | | |
− | 2. The parse of the surcatenation Surc^k of the k sentences S_j,
| + | <li><math>\operatorname{Parse} (\operatorname{Surc}^0) ~=~ \operatorname{Lobe}^0.</math> |
− | for j = 1 to k, is defined recursively as follows:
| |
| | | |
− | a. Parse(Surc^0) = Lobe^0.
| + | <li> |
| + | <p>For <math>k > 0,\!</math></p> |
| | | |
− | b. For k > 0,
| + | <p><math>\operatorname{Parse} (\operatorname{Surc}_{j=1}^k s_j) ~=~ \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li> |
| | | |
− | Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
| + | </ol></ol> |
| | | |
| For ease of reference, Table 12 summarizes the mechanics of these parsing rules. | | For ease of reference, Table 12 summarizes the mechanics of these parsing rules. |
| | | |
| + | <pre> |
| Table 12. Algorithmic Translation Rules | | Table 12. Algorithmic Translation Rules |
| o------------------------o---------o------------------------o | | o------------------------o---------o------------------------o |