MyWikiBiz, Author Your Legacy — Friday October 31, 2025
Jump to navigationJump to search
	
	
	
		126 bytes added
	
		,  19:52, 11 December 2008
	
 
| Line 429: | Line 429: | 
|  | ==Functional Quantifiers== |  | ==Functional Quantifiers== | 
|  |  |  |  | 
| − | The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math>is a higher order proposition that holds for the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> andfails for the rest. | + | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> assigns the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else of that type a value of 0.  Expressed in symbolic form: | 
|  |  |  |  | 
| − | : <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math>
 | + | {| align="center" cellpadding="8" | 
|  | + | | <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math>is a higher order proposition that holds for ordered pairs of propositions in which the first implies the second andfails for the rest. | + | The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> assigns ordered pairs of propositions in which the first implies the second a value of 1 and everything else of that type a value of 0.  Expressed in symbolic form: | 
|  |  |  |  | 
| − | : <math>\Upsilon \langle p, q \rangle = 1 \quad \Leftrightarrow \quad p \Rightarrow q.</math>
 | + | {| align="center" cellpadding="8" | 
|  | + | | <math>\Upsilon \langle p, q \rangle = 1 \quad \Leftrightarrow \quad p \Rightarrow q.</math> | 
|  | + | |} | 
|  |  |  |  | 
|  | ===Tables=== |  | ===Tables=== |