MyWikiBiz, Author Your Legacy — Wednesday April 09, 2025
Jump to navigationJump to search
366 bytes added
, 19:13, 11 December 2008
Line 429:
Line 429:
==Functional Quantifiers==
==Functional Quantifiers==
−
The '''relative umpire operator''' <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions as arguments and gives the value <math>1\!</math> if and only if the first implies the second. In symbols:
+
The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> is a higher order proposition that holds for the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and fails for the rest.
−
: <math>\Upsilon \langle e, f \rangle = 1 \quad \operatorname{iff} \quad e \Rightarrow f.</math>
+
: <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math>
+
+
The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> is a higher order proposition that holds for ordered pairs of propositions in which the first implies the second and fails for the rest.
+
+
: <math>\Upsilon \langle p, q \rangle = 1 \quad \Leftrightarrow \quad p \Rightarrow q.</math>
===Tables===
===Tables===
Line 437:
Line 441:
The auxiliary notations:
The auxiliary notations:
−
: <math>\alpha_i f = \Upsilon (f_i, f),\!</math>
+
: <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)</math>
−
: <math>\beta_i f = \Upsilon (f, f_i),\!</math>
+
: <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math>
define two series of measures:
define two series of measures: