MyWikiBiz, Author Your Legacy — Thursday November 14, 2024
Jump to navigationJump to search
366 bytes added
, 19:13, 11 December 2008
Line 429: |
Line 429: |
| ==Functional Quantifiers== | | ==Functional Quantifiers== |
| | | |
− | The '''relative umpire operator''' <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions as arguments and gives the value <math>1\!</math> if and only if the first implies the second. In symbols: | + | The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> is a higher order proposition that holds for the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and fails for the rest. |
| | | |
− | : <math>\Upsilon \langle e, f \rangle = 1 \quad \operatorname{iff} \quad e \Rightarrow f.</math> | + | : <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math> |
| + | |
| + | The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> is a higher order proposition that holds for ordered pairs of propositions in which the first implies the second and fails for the rest. |
| + | |
| + | : <math>\Upsilon \langle p, q \rangle = 1 \quad \Leftrightarrow \quad p \Rightarrow q.</math> |
| | | |
| ===Tables=== | | ===Tables=== |
Line 437: |
Line 441: |
| The auxiliary notations: | | The auxiliary notations: |
| | | |
− | : <math>\alpha_i f = \Upsilon (f_i, f),\!</math> | + | : <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)</math> |
| | | |
− | : <math>\beta_i f = \Upsilon (f, f_i),\!</math> | + | : <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math> |
| | | |
| define two series of measures: | | define two series of measures: |