Line 324:
Line 324:
===Functional quantifiers===
===Functional quantifiers===
−
'''Exercises.''' Express the following in functional terms:
+
====Tables====
−
−
====Exercise 1====
−
−
<blockquote>
−
<math>(\forall x \in X)(p(x) \Rightarrow q(x))</math>
−
</blockquote>
−
−
<blockquote>
−
<math>\prod_{x \in X} (p_x (q_x)) = 1</math>
−
</blockquote>
−
−
This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here:
−
−
: [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]]
−
−
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 473:
Line 457:
|}<br>
|}<br>
−
====Exercise 2====
+
====Exercises====
+
+
Express the following formulas in functional terms.
+
+
=====Exercise 1=====
+
+
<blockquote>
+
<math>(\forall x \in X)(p(x) \Rightarrow q(x))</math>
+
</blockquote>
+
+
<blockquote>
+
<math>\prod_{x \in X} (p_x (q_x)) = 1</math>
+
</blockquote>
+
+
This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here:
+
+
: [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]]
+
+
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
+
+
=====Exercise 2=====
<blockquote>
<blockquote>
Line 479:
Line 483:
</blockquote>
</blockquote>
−
====Exercise 3====
+
=====Exercise 3=====
<blockquote>
<blockquote>
<math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math>
<math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math>
</blockquote>
</blockquote>