| Line 324: | Line 324: | 
|  | ===Functional quantifiers=== |  | ===Functional quantifiers=== | 
|  |  |  |  | 
| − | '''Exercises.'''  Express the following in functional terms:
 | + | ====Tables==== | 
| − |   |  | 
| − | ====Exercise 1==== |  | 
| − |   |  | 
| − | <blockquote>
 |  | 
| − | <math>(\forall x \in X)(p(x) \Rightarrow q(x))</math>
 |  | 
| − | </blockquote>
 |  | 
| − |   |  | 
| − | <blockquote>
 |  | 
| − | <math>\prod_{x \in X} (p_x (q_x)) = 1</math>
 |  | 
| − | </blockquote>
 |  | 
| − |   |  | 
| − | This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here:
 |  | 
| − |   |  | 
| − | : [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]]
 |  | 
| − |   |  | 
| − | Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
 |  | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| Line 473: | Line 457: | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
| − | ====Exercise 2==== | + | ====Exercises==== | 
|  | + |   | 
|  | + | Express the following formulas in functional terms. | 
|  | + |   | 
|  | + | =====Exercise 1===== | 
|  | + |   | 
|  | + | <blockquote> | 
|  | + | <math>(\forall x \in X)(p(x) \Rightarrow q(x))</math> | 
|  | + | </blockquote> | 
|  | + |   | 
|  | + | <blockquote> | 
|  | + | <math>\prod_{x \in X} (p_x (q_x)) = 1</math> | 
|  | + | </blockquote> | 
|  | + |   | 
|  | + | This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here: | 
|  | + |   | 
|  | + | : [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]] | 
|  | + |   | 
|  | + | Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math> | 
|  | + |   | 
|  | + | =====Exercise 2===== | 
|  |  |  |  | 
|  | <blockquote> |  | <blockquote> | 
| Line 479: | Line 483: | 
|  | </blockquote> |  | </blockquote> | 
|  |  |  |  | 
| − | ====Exercise 3==== | + | =====Exercise 3===== | 
|  |  |  |  | 
|  | <blockquote> |  | <blockquote> | 
|  | <math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math> |  | <math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math> | 
|  | </blockquote> |  | </blockquote> |