Changes

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
282 bytes added ,  02:00, 3 December 2008
→‎Discussion: TXT → TeX
Line 79: Line 79:     
The negation <math>\lnot x</math> is written <math>(x).\!</math>
 
The negation <math>\lnot x</math> is written <math>(x).\!</math>
 +
 +
This corresponds to the logical graph:
 +
 +
<pre>
 +
          x
 +
          o
 +
          |
 +
          O
 +
</pre>
    
The conjunction <math>x \land y</math> is written <math>x y.\!</math>
 
The conjunction <math>x \land y</math> is written <math>x y.\!</math>
 +
 +
This corresponds to the logical graph:
 +
 +
<pre>
 +
        x y
 +
          O
 +
</pre>
    
The conjunction <math>x \land y \land z</math> is written <math>x y z.\!</math>
 
The conjunction <math>x \land y \land z</math> is written <math>x y z.\!</math>
 +
 +
This corresponds to the logical graph:
 +
 +
<pre>
 +
        xyz
 +
          O
 +
</pre>
    
Etc.
 
Etc.
Line 101: Line 124:  
</pre>
 
</pre>
   −
The disjunction "''x'' or ''y'' or ''z''" is written "((''x'')(''y'')(''z''))".
+
The disjunction <math>x \lor y \lor z</math> is written <math>((x)(y)(z)).\!</math>
    
This corresponds to the logical graph:
 
This corresponds to the logical graph:
Line 116: Line 139:  
Etc.
 
Etc.
   −
The implication "''x'' &rArr; ''y''" is written "(''x'' (''y'')), which can be read "not ''x'' without ''y''" if that helps to remember the form of expression.
+
The implication <math>x \Rightarrow y</math> is written <math>(x (y)),\!</math> which can be read "not <math>x\!</math> without <math>y\!</math>" if that helps to remember the form of expression.
    
This corresponds to the logical graph:
 
This corresponds to the logical graph:
Line 128: Line 151:  
</pre>
 
</pre>
   −
Thus, the equivalence "''x'' &hArr; ''y''" has to be written somewhat inefficiently as a conjunction of to and fro implications:  "(''x'' (''y''))(''y'' (''x''))".
+
Thus, the equivalence <math>x \Leftrightarrow y</math> has to be written somewhat inefficiently as a conjunction of two implications:  <math>(x (y)) (y (x)).\!</math>
    
This corresponds to the logical graph:
 
This corresponds to the logical graph:
Line 155: Line 178:  
( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))
 
( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))
 
</pre>
 
</pre>
  −
No kidding &hellip;
 
12,080

edits

Navigation menu