Changes

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
2,070 bytes added ,  20:40, 2 December 2008
Line 10: Line 10:     
==Logical Equivalence Problem==
 
==Logical Equivalence Problem==
 +
 +
===Problem===
    
* [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].
 
* [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].
   −
* [http://mathforum.org/kb/plaintext.jspa?messageID=6514666 Solution posted by Jon Awbrey, working by way of logical graphs].
+
===Solution===
 +
 
 +
* [http://mathforum.org/kb/plaintext.jspa?messageID=6514666 Solution posted by Jon Awbrey, working in the medium of logical graphs].
    
<pre>
 
<pre>
Line 73: Line 77:     
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
</pre>
 +
 +
===Discussion===
 +
 +
<pre>
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 +
 +
Back to the initial problem:
 +
 +
* Show that ~(p <=> q) is equivalent to (~q) <=> p
 +
 +
We can translate this into logical graphs by supposing that we
 +
have to express everything in terms of negation and conjunction,
 +
using parentheses for negation -- that is, "(x)" for "not x" --
 +
and simple concatenation for conjunction -- "xyz" or "x y z"
 +
for "x and y and z".
 +
 +
In this form of representation, for historical reasons called
 +
the "existential interpretation" of logical graphs, we have
 +
the following expressions for basic logical operations:
 +
 +
The disjunction "x or y" is written "((x)(y))".
 +
 +
This corresponds to the logical graph:
 +
 +
        x  y
 +
        o  o
 +
        \ /
 +
          o
 +
          |
 +
          O
 +
 +
The disjunction "x or y or z" is written "((x)(y)(z))".
 +
 +
This corresponds to the logical graph:
 +
 +
        x y z
 +
        o o o
 +
        \|/
 +
          o
 +
          |
 +
          O
 +
 +
Etc.
 +
 +
The implication "x => y" is written "(x (y)),
 +
which can be read "not x without y" if that
 +
helps to remember the form of expression.
 +
 +
This corresponds to the logical graph:
 +
 +
        y o
 +
          |
 +
        x o
 +
          |
 +
          O
 +
 +
Thus, the equivalence "x <=> y" has to be written somewhat
 +
inefficiently as a conjunction of to and fro implications:
 +
"(x (y))(y (x))".
 +
 +
This corresponds to the logical graph:
 +
 +
      y o  o x
 +
        |  |
 +
      x o  o y
 +
        \ /
 +
          O
 +
 +
Putting all the pieces together, the problem given
 +
amounts to proving the following equation, expressed
 +
in parse string and logical graph forms, respectively:
 +
 +
* Show that ~(p <=> q) is equivalent to (~q) <=> p
 +
 +
      q o  o p          q o
 +
        |  |              |
 +
      p o  o q            o  o p
 +
        \ /                |  |
 +
          o              p o  o--o q
 +
          |                  \ /
 +
          O        =        O
 +
 +
( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))
 +
 +
No kidding ...
 +
 +
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
 
</pre>
 
</pre>
12,080

edits

Navigation menu