MyWikiBiz, Author Your Legacy — Tuesday November 04, 2025
Jump to navigationJump to search
	
	
	
		2,070 bytes added
	
		,  20:40, 2 December 2008
	
 
| Line 10: | 
Line 10: | 
|   |  |   |  | 
|   | ==Logical Equivalence Problem==  |   | ==Logical Equivalence Problem==  | 
|   | + |  | 
|   | + | ===Problem===  | 
|   |  |   |  | 
|   | * [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].  |   | * [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].  | 
|   |  |   |  | 
| − | * [http://mathforum.org/kb/plaintext.jspa?messageID=6514666 Solution posted by Jon Awbrey, working by way of logical graphs].  | + | ===Solution===  | 
|   | + |    | 
|   | + | * [http://mathforum.org/kb/plaintext.jspa?messageID=6514666 Solution posted by Jon Awbrey, working in the medium of logical graphs].  | 
|   |  |   |  | 
|   | <pre>  |   | <pre>  | 
| Line 73: | 
Line 77: | 
|   |  |   |  | 
|   | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o  |   | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o  | 
|   | + | </pre>  | 
|   | + |  | 
|   | + | ===Discussion===  | 
|   | + |  | 
|   | + | <pre>  | 
|   | + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o  | 
|   | + |  | 
|   | + | Back to the initial problem:  | 
|   | + |  | 
|   | + | * Show that ~(p <=> q) is equivalent to (~q) <=> p  | 
|   | + |  | 
|   | + | We can translate this into logical graphs by supposing that we  | 
|   | + | have to express everything in terms of negation and conjunction,  | 
|   | + | using parentheses for negation -- that is, "(x)" for "not x" --  | 
|   | + | and simple concatenation for conjunction -- "xyz" or "x y z"  | 
|   | + | for "x and y and z".  | 
|   | + |  | 
|   | + | In this form of representation, for historical reasons called  | 
|   | + | the "existential interpretation" of logical graphs, we have  | 
|   | + | the following expressions for basic logical operations:  | 
|   | + |  | 
|   | + | The disjunction "x or y" is written "((x)(y))".  | 
|   | + |  | 
|   | + | This corresponds to the logical graph:  | 
|   | + |  | 
|   | + |         x   y  | 
|   | + |         o   o  | 
|   | + |          \ /  | 
|   | + |           o  | 
|   | + |           |  | 
|   | + |           O  | 
|   | + |  | 
|   | + | The disjunction "x or y or z" is written "((x)(y)(z))".  | 
|   | + |  | 
|   | + | This corresponds to the logical graph:  | 
|   | + |  | 
|   | + |         x y z  | 
|   | + |         o o o  | 
|   | + |          \|/  | 
|   | + |           o  | 
|   | + |           |  | 
|   | + |           O  | 
|   | + |  | 
|   | + | Etc.  | 
|   | + |  | 
|   | + | The implication "x => y" is written "(x (y)),  | 
|   | + | which can be read "not x without y" if that  | 
|   | + | helps to remember the form of expression.  | 
|   | + |  | 
|   | + | This corresponds to the logical graph:  | 
|   | + |  | 
|   | + |         y o  | 
|   | + |           |  | 
|   | + |         x o  | 
|   | + |           |  | 
|   | + |           O  | 
|   | + |  | 
|   | + | Thus, the equivalence "x <=> y" has to be written somewhat  | 
|   | + | inefficiently as a conjunction of to and fro implications:  | 
|   | + | "(x (y))(y (x))".  | 
|   | + |  | 
|   | + | This corresponds to the logical graph:  | 
|   | + |  | 
|   | + |       y o   o x  | 
|   | + |         |   |  | 
|   | + |       x o   o y  | 
|   | + |          \ /  | 
|   | + |           O  | 
|   | + |  | 
|   | + | Putting all the pieces together, the problem given  | 
|   | + | amounts to proving the following equation, expressed  | 
|   | + | in parse string and logical graph forms, respectively:  | 
|   | + |  | 
|   | + | * Show that ~(p <=> q) is equivalent to (~q) <=> p  | 
|   | + |  | 
|   | + |       q o   o p           q o  | 
|   | + |         |   |               |  | 
|   | + |       p o   o q             o   o p  | 
|   | + |          \ /                |   |  | 
|   | + |           o               p o   o--o q  | 
|   | + |           |                  \ /  | 
|   | + |           O         =         O  | 
|   | + |  | 
|   | + | ( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))  | 
|   | + |  | 
|   | + | No kidding ...  | 
|   | + |  | 
|   | + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o   | 
|   | </pre>  |   | </pre>  |