MyWikiBiz, Author Your Legacy — Tuesday November 04, 2025
Jump to navigationJump to search
	
	
	
		17 bytes added
	
		,  01:04, 19 November 2008
	
 
| Line 414: | 
Line 414: | 
|   | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.  |   | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.  | 
|   |  |   |  | 
| − | <math>\begin{matrix}  | + | <center><math>\begin{matrix}  | 
|   | \alpha_0 f = 1             &  |   | \alpha_0 f = 1             &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f_0 \Rightarrow f          &  |   | f_0 \Rightarrow f          &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | 0 \Rightarrow f.           &  |   | 0 \Rightarrow f.           &  | 
| − | \mathrm{Therefore}         &  | + | \therefore                 &  | 
|   | \alpha_0 f = 1             &  |   | \alpha_0 f = 1             &  | 
|   | \operatorname{for~all}\ f. \\  |   | \operatorname{for~all}\ f. \\  | 
|   | \alpha_{15} f = 1          &  |   | \alpha_{15} f = 1          &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f_{15} \Rightarrow f       &  |   | f_{15} \Rightarrow f       &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | 1 \Rightarrow f.           &  |   | 1 \Rightarrow f.           &  | 
| − | \mathrm{Therefore}         &  | + | \therefore                 &  | 
|   | \alpha_{15} f = 1          &  |   | \alpha_{15} f = 1          &  | 
| − | \mathit{iff} f = 1.        \\  | + | \mathrm{iff} f = 1.        \\  | 
|   | \beta_0 f = 1              &  |   | \beta_0 f = 1              &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f \Rightarrow f_0          &  |   | f \Rightarrow f_0          &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f \Rightarrow 0.           &  |   | f \Rightarrow 0.           &  | 
| − | \mathrm{Therefore}         &  | + | \therefore                 &  | 
|   | \beta_0 f = 1              &  |   | \beta_0 f = 1              &  | 
| − | \mathit{iff} f = 0.        \\  | + | \mathrm{iff} f = 0.        \\  | 
|   | \beta_{15} f = 1           &  |   | \beta_{15} f = 1           &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f \Rightarrow f_{15}       &  |   | f \Rightarrow f_{15}       &  | 
| − | \mathit{iff}               &  | + | \mathrm{iff}               &  | 
|   | f \Rightarrow 1.           &  |   | f \Rightarrow 1.           &  | 
| − | \mathrm{Therefore}         &  | + | \therefore                 &  | 
|   | \beta_{15} f = 1           &  |   | \beta_{15} f = 1           &  | 
|   | \operatorname{for~all}\ f. \\  |   | \operatorname{for~all}\ f. \\  | 
| − | \end{matrix}</math>  | + | \end{matrix}</math></center>  | 
|   |  |   |  | 
|   | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.  |   | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.  |