MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
17 bytes added
, 01:04, 19 November 2008
Line 414: |
Line 414: |
| Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. | | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. |
| | | |
− | <math>\begin{matrix} | + | <center><math>\begin{matrix} |
| \alpha_0 f = 1 & | | \alpha_0 f = 1 & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f_0 \Rightarrow f & | | f_0 \Rightarrow f & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| 0 \Rightarrow f. & | | 0 \Rightarrow f. & |
− | \mathrm{Therefore} & | + | \therefore & |
| \alpha_0 f = 1 & | | \alpha_0 f = 1 & |
| \operatorname{for~all}\ f. \\ | | \operatorname{for~all}\ f. \\ |
| \alpha_{15} f = 1 & | | \alpha_{15} f = 1 & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f_{15} \Rightarrow f & | | f_{15} \Rightarrow f & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| 1 \Rightarrow f. & | | 1 \Rightarrow f. & |
− | \mathrm{Therefore} & | + | \therefore & |
| \alpha_{15} f = 1 & | | \alpha_{15} f = 1 & |
− | \mathit{iff} f = 1. \\ | + | \mathrm{iff} f = 1. \\ |
| \beta_0 f = 1 & | | \beta_0 f = 1 & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f \Rightarrow f_0 & | | f \Rightarrow f_0 & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f \Rightarrow 0. & | | f \Rightarrow 0. & |
− | \mathrm{Therefore} & | + | \therefore & |
| \beta_0 f = 1 & | | \beta_0 f = 1 & |
− | \mathit{iff} f = 0. \\ | + | \mathrm{iff} f = 0. \\ |
| \beta_{15} f = 1 & | | \beta_{15} f = 1 & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f \Rightarrow f_{15} & | | f \Rightarrow f_{15} & |
− | \mathit{iff} & | + | \mathrm{iff} & |
| f \Rightarrow 1. & | | f \Rightarrow 1. & |
− | \mathrm{Therefore} & | + | \therefore & |
| \beta_{15} f = 1 & | | \beta_{15} f = 1 & |
| \operatorname{for~all}\ f. \\ | | \operatorname{for~all}\ f. \\ |
− | \end{matrix}</math> | + | \end{matrix}</math></center> |
| | | |
| Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. | | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. |