Line 236: |
Line 236: |
| Throwing in the lower default value permits the following abbreviations: | | Throwing in the lower default value permits the following abbreviations: |
| | | |
− | {| celpadding="4" | + | {| cellpadding="4" |
| | align="right" width="36" | 3. | | | align="right" width="36" | 3. |
| | <math>\Upsilon q = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math> | | | <math>\Upsilon q = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math> |
Line 414: |
Line 414: |
| Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. | | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. |
| | | |
− | {| cellpadding="2"
| + | <math>\begin{matrix} |
− | | width="36" |
| + | \alpha_0 f = 1 & |
− | | <math>\alpha_{00} f = 1\!</math>
| + | \mathit{iff} & |
− | | iff || <math>f_{00} \Rightarrow f,</math>
| + | f_0 \Rightarrow f & |
− | | iff || <math>0 \Rightarrow f,</math>
| + | \mathit{iff} & |
− | | hence || <math>\alpha_{00} f = 1\ \operatorname{for~all}\ f.</math>
| + | 0 \Rightarrow f. & |
− | |-
| + | \mathrm{Therefore} & |
− | |
| + | \alpha_0 f = 1 & |
− | | <math>\alpha_{15} f = 1\!</math>
| + | \operatorname{for~all}\ f. \\ |
− | | iff || <math>f_{15} \Rightarrow f,</math>
| + | \alpha_{15} f = 1 & |
− | | iff || <math>1 \Rightarrow f,</math>
| + | \mathit{iff} & |
− | | hence || <math>\alpha_{15} f = 1 \Rightarrow f = 1.</math>
| + | f_{15} \Rightarrow f & |
− | |-
| + | \mathit{iff} & |
− | |
| + | 1 \Rightarrow f. & |
− | | <math>\beta_{00} f = 1\!</math>
| + | \mathrm{Therefore} & |
− | | iff || <math>f \Rightarrow f_{00},</math>
| + | \alpha_{15} f = 1 & |
− | | iff || <math>f \Rightarrow 0,</math>
| + | \mathit{iff} f = 1. \\ |
− | | hence || <math>\beta_{00} f = 1 \Rightarrow f = 0.</math>
| + | \beta_0 f = 1 & |
− | |-
| + | \mathit{iff} & |
− | |
| + | f \Rightarrow f_0 & |
− | | <math>\beta_{15} f = 1\!</math>
| + | \mathit{iff} & |
− | | iff || <math>f \Rightarrow f_{15},</math>
| + | f \Rightarrow 0. & |
− | | iff || <math>f \Rightarrow 1,</math>
| + | \mathrm{Therefore} & |
− | | hence || <math>\beta_{15} f = 1\ \operatorname{for~all}\ f.</math>
| + | \beta_0 f = 1 & |
− | |}<br>
| + | \mathit{iff} f = 0. \\ |
| + | \beta_{15} f = 1 & |
| + | \mathit{iff} & |
| + | f \Rightarrow f_{15} & |
| + | \mathit{iff} & |
| + | f \Rightarrow 1. & |
| + | \mathrm{Therefore} & |
| + | \beta_{15} f = 1 & |
| + | \operatorname{for~all}\ f. \\ |
| + | \end{matrix}</math> |
| | | |
| Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. | | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. |