| Line 986: | Line 986: | 
|  | We may analyze <math>X^2 = \{ (u, v) : u, v \in X \}</math> into two parts, specifically, the ordered pairs <math>(u, v)\!</math> that lie on and off the diagonal: |  | We may analyze <math>X^2 = \{ (u, v) : u, v \in X \}</math> into two parts, specifically, the ordered pairs <math>(u, v)\!</math> that lie on and off the diagonal: | 
|  |  |  |  | 
| − | : <math>X^2 = \{ (u, v) : u = v \}\ \cup\ \{ (u, v) : u \ne v \}</math> | + | : <math>\begin{matrix} | 
|  | + | X^2 & = & \{ (u, v) : u = v \} & \cup & \{ (u, v) : u \ne v \}. | 
|  | + | \end{matrix}</math> | 
|  |  |  |  | 
| − | In symbolic terms, this partition may be expressedas:
 | + | This partition may also be expressed in the follwing symbolic form: | 
|  | + | : <math>\begin{matrix} | 
|  | + | X^2 & \cong & \operatorname{diag}(X) & + & 2 \tbinom{X}{2}. | 
|  | + | \end{matrix}</math> | 
|  |  |  |  | 
| − | : ''X''<sup>2</sup> <math>\cong</math> Diag(''X'') + 2 * Comb(''X'', 2), | + | The separate terms of this formula are defined as follows: | 
|  |  |  |  | 
| − | where:
 | + | : <math>\begin{matrix} | 
|  | + | \operatorname{diag}(X) & = & \{ (x, x) : x \in X \}. | 
|  | + | \end{matrix}</math> | 
|  |  |  |  | 
| − | : Diag(''X'') = {‹''x'', ''x''› : ''x'' ∈ ''X''}, | + | : <math>\begin{matrix} | 
|  | + | \tbinom{X}{k} & = & X\ \operatorname{choose}\ k & = & \{ k\!\mbox{-sets from}\ X \}. | 
|  | + | \end{matrix}</math> | 
|  |  |  |  | 
| − | and where:
 | + | Thus we have: | 
|  |  |  |  | 
| − | : Comb(''X'', ''k'') = "''X'' choose ''k''" = {''k''-sets from ''X''}, | + | : <math>\begin{matrix} | 
| − |   | + | \tbinom{X}{2} & = & \{ \{ u, v \} : u, v \in X \}. | 
| − | so that:
 | + | \end{matrix}</math> | 
| − |   |  | 
| − | :  Comb(''X'', 2) = {{''u'',''v''} :''u'',''v'' ∈ ''X''}.
 |  | 
|  |  |  |  | 
|  | We can now use the features in d<font face="lucida calligraphy">X</font> = {d''x''<sub>''i''</sub>} = {d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>} to classify the paths of ('''B''' → ''X'') by way of the pairs in ''X''<sup>2</sup>.  If ''X'' <math>\cong</math> '''B'''<sup>''n''</sup> then a path in ''X'' has the form ''q'' : ('''B''' → '''B'''<sup>''n''</sup>) <math>\cong</math> '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup> <math>\cong</math> '''B'''<sup>2''n''</sup> <math>\cong</math> ('''B'''<sup>2</sup>)<sup>''n''</sup>.  Intuitively, we want to map this ('''B'''<sup>2</sup>)<sup>''n''</sup> onto ''D''<sup>''n''</sup> by mapping each component '''B'''<sup>2</sup> onto a copy of '''D'''.  But in our current situation "'''D'''" is just a name we give, or an accidental quality we attribute, to coefficient values in '''B''' when they are attached to features in d<font face="lucida calligraphy">X</font>. |  | We can now use the features in d<font face="lucida calligraphy">X</font> = {d''x''<sub>''i''</sub>} = {d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>} to classify the paths of ('''B''' → ''X'') by way of the pairs in ''X''<sup>2</sup>.  If ''X'' <math>\cong</math> '''B'''<sup>''n''</sup> then a path in ''X'' has the form ''q'' : ('''B''' → '''B'''<sup>''n''</sup>) <math>\cong</math> '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup> <math>\cong</math> '''B'''<sup>2''n''</sup> <math>\cong</math> ('''B'''<sup>2</sup>)<sup>''n''</sup>.  Intuitively, we want to map this ('''B'''<sup>2</sup>)<sup>''n''</sup> onto ''D''<sup>''n''</sup> by mapping each component '''B'''<sup>2</sup> onto a copy of '''D'''.  But in our current situation "'''D'''" is just a name we give, or an accidental quality we attribute, to coefficient values in '''B''' when they are attached to features in d<font face="lucida calligraphy">X</font>. |