MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
27 bytes removed
, 00:50, 29 July 2008
Line 984: |
Line 984: |
| A sense of the relation between <math>\mathbb{B}</math> and <math>\mathbb{D}</math> may be obtained by considering the ''path classifier'' (or the ''equivalence class of curves'') approach to tangent vectors. Consider a universe <math>[\mathcal{X}].</math> Given the boolean value system, a path in the space <math>X = \langle \mathcal{X} \rangle</math> is a map <math>q : \mathbb{B} \to X.</math> In this context the set of paths <math>(\mathbb{B} \to X)</math> is isomorphic to the cartesian square <math>X^2 = X \times X,</math> or the set of ordered pairs chosen from <math>X.\!</math> | | A sense of the relation between <math>\mathbb{B}</math> and <math>\mathbb{D}</math> may be obtained by considering the ''path classifier'' (or the ''equivalence class of curves'') approach to tangent vectors. Consider a universe <math>[\mathcal{X}].</math> Given the boolean value system, a path in the space <math>X = \langle \mathcal{X} \rangle</math> is a map <math>q : \mathbb{B} \to X.</math> In this context the set of paths <math>(\mathbb{B} \to X)</math> is isomorphic to the cartesian square <math>X^2 = X \times X,</math> or the set of ordered pairs chosen from <math>X.\!</math> |
| | | |
− | We may analyze ''X''<sup>2</sup> = {‹''u'', ''v''› : ''u'', ''v'' ∈ ''X''} into two parts, specifically, the pairs that lie on and off the diagonal: | + | We may analyze <math>X^2 = \{ (u, v) : u, v \in X \}</math> into two parts, specifically, the ordered pairs <math>(u, v)\!</math> that lie on and off the diagonal: |
| | | |
− | : ''X''<sup>2</sup> = {‹''u'', ''v''› : ''u'' = ''v''} ∪ {‹''u'', ''v''› : ''u'' ≠ ''v''} | + | : <math>X^2 = \{ (u, v) : u = v \}\ \cup\ \{ (u, v) : u \ne v \}</math> |
| | | |
| In symbolic terms, this partition may be expressed as: | | In symbolic terms, this partition may be expressed as: |