Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
Line 1,084: Line 1,084:  
This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math>
 
This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math>
   −
Finally, the tangent universe E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>:
+
Finally, the tangent universe <math>\operatorname{E}A^\circ = [\operatorname{E}\mathcal{A}]</math> is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features <math>\operatorname{E}\mathcal{A},</math> and this fact is summed up in the following notation:
   −
: E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] = [''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;''a''<sub>''n''</sub>,&nbsp;d''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;d''a''<sub>''n''</sub>],
+
: <p><math>\begin{array}{lclcl}
 +
\operatorname{E}A^\circ
 +
& = & [\operatorname{E}\mathcal{A}]
 +
& = & [a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n]. \\
 +
\end{array}</math></p>
   −
thus giving the tangent universe E''A''<sup>&nbsp;&bull;</sup> the type
+
This gives the tangent universe <math>\operatorname{E}A^\circ</math> the type:
('''B'''<sup>''n''</sup> &times; '''D'''<sup>''n''</sup> +&rarr; '''B''') = ('''B'''<sup>''n''</sup> &times; '''D'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> &times; '''D'''<sup>''n''</sup> &rarr; '''B''')).
+
 
 +
: <p><math>\begin{array}{lcl}
 +
(\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B})
 +
& = & (\mathbb{B}^n \times \mathbb{D}^n, (\mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B})). \\
 +
\end{array}</math></p>
    
A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
 
A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
12,080

edits

Navigation menu