Line 1,059: |
Line 1,059: |
| Next we define the ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as follows: | | Next we define the ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as follows: |
| | | |
− | : <math>\operatorname{E}\mathcal{A} = \mathcal{A} \cup \operatorname{d}\mathcal{A} = \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n\}</math> | + | : <p><math>\begin{array}{lclcl} |
| + | \operatorname{E}\mathcal{A} |
| + | & = & \mathcal{A} \cup \operatorname{d}\mathcal{A} |
| + | & = & \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n\}. \\ |
| + | \end{array}</math></p> |
| | | |
| This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A,</math> or the ''tangent bundle'' over the initial space <math>A,\!</math> in the following fashion: | | This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A,</math> or the ''tangent bundle'' over the initial space <math>A,\!</math> in the following fashion: |
| | | |
− | :{| cellpadding=2 | + | : <p><math>\begin{array}{lcl} |
− | | E''A''
| + | \operatorname{E}A |
− | | =
| + | & = & \langle \operatorname{E}\mathcal{A} \rangle \\ |
− | | ''A'' × d''A''
| + | & = & \langle \mathcal{A} \cup \operatorname{d}\mathcal{A} \rangle \\ |
− | |-
| + | & = & \langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle, \\ |
− | |
| + | \end{array}</math></p> |
− | | =
| |
− | | 〈E<font face="lucida calligraphy">A</font>〉
| |
− | |-
| |
− | |
| |
− | | =
| |
− | | 〈<font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>〉
| |
− | |-
| |
− | |
| |
− | | =
| |
− | | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉,
| |
− | |}
| |
| | | |
− | thus giving E''A'' the type '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>.
| + | and also: |
| + | |
| + | : <p><math>\begin{array}{lcl} |
| + | \operatorname{E}A |
| + | & = & A \times \operatorname{d}A \\ |
| + | & = & A_1 \times \ldots \times A_n \times \operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n. \\ |
| + | \end{array}</math></p> |
| + | |
| + | This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> |
| | | |
| Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: | | Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: |