Line 975:
Line 975:
<pre>
<pre>
+
\PMlinkescapephrase{algebraic}
+
\PMlinkescapephrase{Algebraic}
\PMlinkescapephrase{basis}
\PMlinkescapephrase{basis}
\PMlinkescapephrase{Basis}
\PMlinkescapephrase{Basis}
Line 983:
Line 985:
\PMlinkescapephrase{mode}
\PMlinkescapephrase{mode}
\PMlinkescapephrase{Mode}
\PMlinkescapephrase{Mode}
−
−
\textbf{Note.} The following Tables are best viewed in the Page Image mode.
\tableofcontents
\tableofcontents
Line 990:
Line 990:
\subsection{Differential Forms Expanded on a Logical Basis}
\subsection{Differential Forms Expanded on a Logical Basis}
−
\begin{tabular}{|c|c|c|c|}
+
\begin{center}\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\textbf{Differential Forms Expanded on a Logical Basis}} \\
\multicolumn{4}{c}{\textbf{Differential Forms Expanded on a Logical Basis}} \\
\hline
\hline
Line 1,003:
Line 1,003:
$0$ \\
$0$ \\
\hline
\hline
−
$\begin{matrix}
+
$\begin{smallmatrix}
f_{1} \\
f_{1} \\
f_{2} \\
f_{2} \\
f_{4} \\
f_{4} \\
f_{8} \\
f_{8} \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(x) & (y) \\
(x) & (y) \\
(x) & y \\
(x) & y \\
x & (y) \\
x & (y) \\
x & y \\
x & y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(y) & \operatorname{d}x\ (\operatorname{d}y) & + &
(y) & \operatorname{d}x\ (\operatorname{d}y) & + &
(x) & (\operatorname{d}x)\ \operatorname{d}y & + &
(x) & (\operatorname{d}x)\ \operatorname{d}y & + &
Line 1,030:
Line 1,030:
x & (\operatorname{d}x)\ \operatorname{d}y & + &
x & (\operatorname{d}x)\ \operatorname{d}y & + &
((x, y)) & \operatorname{d}x\ \operatorname{d}y \\
((x, y)) & \operatorname{d}x\ \operatorname{d}y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(y) & \partial x & + & (x) & \partial y \\
(y) & \partial x & + & (x) & \partial y \\
y & \partial x & + & (x) & \partial y \\
y & \partial x & + & (x) & \partial y \\
(y) & \partial x & + & x & \partial y \\
(y) & \partial x & + & x & \partial y \\
y & \partial x & + & x & \partial y \\
y & \partial x & + & x & \partial y \\
−
\end{matrix}$ \\
+
\end{smallmatrix}$ \\
\hline
\hline
−
$\begin{matrix}
+
$\begin{smallmatrix}
f_{3} \\
f_{3} \\
f_{12} \\
f_{12} \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(x) \\
(x) \\
x \\
x \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ \operatorname{d}y \\
\operatorname{d}x\ \operatorname{d}y \\
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ \operatorname{d}y \\
\operatorname{d}x\ \operatorname{d}y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
\partial x \\
\partial x \\
\partial x \\
\partial x \\
−
\end{matrix}$ \\
+
\end{smallmatrix}$ \\
\hline
\hline
−
$\begin{matrix}
+
$\begin{smallmatrix}
f_{6} \\
f_{6} \\
f_{9} \\
f_{9} \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(x, & y) \\
(x, & y) \\
((x, & y)) \\
((x, & y)) \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ (\operatorname{d}y) & + &
(\operatorname{d}x)\ \operatorname{d}y \\
(\operatorname{d}x)\ \operatorname{d}y \\
\operatorname{d}x\ (\operatorname{d}y) & + &
\operatorname{d}x\ (\operatorname{d}y) & + &
(\operatorname{d}x)\ \operatorname{d}y \\
(\operatorname{d}x)\ \operatorname{d}y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
\partial x & + & \partial y \\
\partial x & + & \partial y \\
\partial x & + & \partial y \\
\partial x & + & \partial y \\
−
\end{matrix}$ \\
+
\end{smallmatrix}$ \\
\hline
\hline
−
$\begin{matrix}
+
$\begin{smallmatrix}
f_{5} \\
f_{5} \\
f_{10} \\
f_{10} \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(y) \\
(y) \\
y \\
y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(\operatorname{d}x)\ \operatorname{d}y & + &
(\operatorname{d}x)\ \operatorname{d}y & + &
\operatorname{d}x\ \operatorname{d}y \\
\operatorname{d}x\ \operatorname{d}y \\
(\operatorname{d}x)\ \operatorname{d}y & + &
(\operatorname{d}x)\ \operatorname{d}y & + &
\operatorname{d}x\ \operatorname{d}y \\
\operatorname{d}x\ \operatorname{d}y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
\partial y \\
\partial y \\
\partial y \\
\partial y \\
−
\end{matrix}$ \\
+
\end{smallmatrix}$ \\
\hline
\hline
−
$\begin{matrix}
+
$\begin{smallmatrix}
f_{7} \\
f_{7} \\
f_{11} \\
f_{11} \\
f_{13} \\
f_{13} \\
f_{14} \\
f_{14} \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
(x & y) \\
(x & y) \\
(x & (y)) \\
(x & (y)) \\
((x) & y) \\
((x) & y) \\
((x) & (y)) \\
((x) & (y)) \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
y & \operatorname{d}x\ (\operatorname{d}y) & + &
y & \operatorname{d}x\ (\operatorname{d}y) & + &
x & (\operatorname{d}x)\ \operatorname{d}y & + &
x & (\operatorname{d}x)\ \operatorname{d}y & + &
Line 1,132:
Line 1,132:
(x) & (\operatorname{d}x)\ \operatorname{d}y & + &
(x) & (\operatorname{d}x)\ \operatorname{d}y & + &
((x, y)) & \operatorname{d}x\ \operatorname{d}y \\
((x, y)) & \operatorname{d}x\ \operatorname{d}y \\
−
\end{matrix}$
+
\end{smallmatrix}$
&
&
−
$\begin{matrix}
+
$\begin{smallmatrix}
y & \partial x & + & x & \partial y \\
y & \partial x & + & x & \partial y \\
(y) & \partial x & + & x & \partial y \\
(y) & \partial x & + & x & \partial y \\
y & \partial x & + & (x) & \partial y \\
y & \partial x & + & (x) & \partial y \\
(y) & \partial x & + & (x) & \partial y \\
(y) & \partial x & + & (x) & \partial y \\
−
\end{matrix}$ \\
+
\end{smallmatrix}$ \\
+
\hline
+
$f_{15}$ &
+
$((~))$ &
+
$0$ &
+
$0$ \\
+
\hline
+
\end{tabular}\end{center}
+
+
\subsection{Differential Forms Expanded on an Algebraic Basis}
+
+
\begin{center}\begin{tabular}{|c|c|c|c|}
+
\multicolumn{4}{c}{\textbf{Differential Forms Expanded on an Algebraic Basis}} \\
+
\hline
+
&
+
$f$ &
+
$\operatorname{D}f$ &
+
$\operatorname{d}f$ \\
+
\hline
+
$f_{0}$ &
+
$(~)$ &
+
$0$ &
+
$0$ \\
+
\hline
+
$\begin{smallmatrix}
+
f_{1} \\
+
f_{2} \\
+
f_{4} \\
+
f_{8} \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(x) & (y) \\
+
(x) & y \\
+
x & (y) \\
+
x & y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(y) & \operatorname{d}x & + &
+
(x) & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
y & \operatorname{d}x & + &
+
(x) & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
(y) & \operatorname{d}x & + &
+
x & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
y & \operatorname{d}x & + &
+
x & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & x & \operatorname{d}y \\
+
y & \operatorname{d}x & + & x & \operatorname{d}y \\
+
\end{smallmatrix}$ \\
+
\hline
+
$\begin{smallmatrix}
+
f_{3} \\
+
f_{12} \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(x) \\
+
x \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}x \\
+
\operatorname{d}x \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}x \\
+
\operatorname{d}x \\
+
\end{smallmatrix}$ \\
+
\hline
+
$\begin{smallmatrix}
+
f_{6} \\
+
f_{9} \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(x, & y) \\
+
((x, & y)) \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\end{smallmatrix}$ \\
+
\hline
+
$\begin{smallmatrix}
+
f_{5} \\
+
f_{10} \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(y) \\
+
y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}y \\
+
\operatorname{d}y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
\operatorname{d}y \\
+
\operatorname{d}y \\
+
\end{smallmatrix}$ \\
+
\hline
+
$\begin{smallmatrix}
+
f_{7} \\
+
f_{11} \\
+
f_{13} \\
+
f_{14} \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
(x & y) \\
+
(x & (y)) \\
+
((x) & y) \\
+
((x) & (y)) \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
y & \operatorname{d}x & + &
+
x & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
(y) & \operatorname{d}x & + &
+
x & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
y & \operatorname{d}x & + &
+
(x) & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
(y) & \operatorname{d}x & + &
+
(x) & \operatorname{d}y & + &
+
\operatorname{d}x\ \operatorname{d}y \\
+
\end{smallmatrix}$
+
&
+
$\begin{smallmatrix}
+
y & \operatorname{d}x & + & x & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & x & \operatorname{d}y \\
+
y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
\end{smallmatrix}$ \\
\hline
\hline
$f_{15}$ &
$f_{15}$ &
Line 1,146:
Line 1,300:
$0$ \\
$0$ \\
\hline
\hline
−
\end{tabular}
+
\end{tabular}\end{center}
</pre>
</pre>
Line 1,156:
Line 1,310:
\PMlinkescapephrase{mode}
\PMlinkescapephrase{mode}
\PMlinkescapephrase{Mode}
\PMlinkescapephrase{Mode}
−
−
\textbf{Note.} The following Tables are best viewed in the Page Image mode.
\tableofcontents
\tableofcontents
Line 1,164:
Line 1,316:
\begin{quote}\begin{tabular}{||c||c|c|c|c||}
\begin{quote}\begin{tabular}{||c||c|c|c|c||}
−
\multicolumn{5}{c}{\textbf{Detail of Calculation for} $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt]
+
\multicolumn{5}{c}{\textbf{Detail of Calculation for $\operatorname{D}f = \operatorname{E}f + f$}} \\[6pt]
\hline\hline
\hline\hline
&
&