Line 973: |
Line 973: |
| | | |
| <pre> | | <pre> |
| + | \PMlinkescapephrase{basis} |
| + | \PMlinkescapephrase{Basis} |
| + | \PMlinkescapephrase{expanded} |
| + | \PMlinkescapephrase{expanded} |
| \PMlinkescapephrase{image} | | \PMlinkescapephrase{image} |
| \PMlinkescapephrase{Image} | | \PMlinkescapephrase{Image} |
Line 982: |
Line 986: |
| \tableofcontents | | \tableofcontents |
| | | |
− | \subsection{Table A7. Detail of Calculation for the Difference Map} | + | \subsection{Differential Forms Expanded on a Logical Basis} |
| + | |
| + | \begin{tabular}{|c|c|c|c|} |
| + | \multicolumn{4}{c}{\textbf{Differential Forms Expanded on a Logical Basis}} \\ |
| + | \hline |
| + | & |
| + | $f$ & |
| + | $\operatorname{D}f$ & |
| + | $\operatorname{d}f$ \\ |
| + | \hline |
| + | $f_{0}$ & |
| + | $(~)$ & |
| + | $0$ & |
| + | $0$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{1} \\ |
| + | f_{2} \\ |
| + | f_{4} \\ |
| + | f_{8} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (x) & (y) \\ |
| + | (x) & y \\ |
| + | x & (y) \\ |
| + | x & y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (y) & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (x) & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | ((x, y)) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | y & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (x) & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | (x, y) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | x & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | (x, y) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | y & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | x & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | ((x, y)) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (y) & \partial x & + & (x) & \partial y \\ |
| + | y & \partial x & + & (x) & \partial y \\ |
| + | (y) & \partial x & + & x & \partial y \\ |
| + | y & \partial x & + & x & \partial y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{3} \\ |
| + | f_{12} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (x) \\ |
| + | x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \partial x \\ |
| + | \partial x \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{6} \\ |
| + | f_{9} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (x, & y) \\ |
| + | ((x, & y)) \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (\operatorname{d}x)\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (\operatorname{d}x)\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \partial x & + & \partial y \\ |
| + | \partial x & + & \partial y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{5} \\ |
| + | f_{10} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (y) \\ |
| + | y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \partial y \\ |
| + | \partial y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{7} \\ |
| + | f_{11} \\ |
| + | f_{13} \\ |
| + | f_{14} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (x & y) \\ |
| + | (x & (y)) \\ |
| + | ((x) & y) \\ |
| + | ((x) & (y)) \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | y & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | x & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | ((x, y)) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | x & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | (x, y) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | y & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (x) & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | (x, y) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x\ (\operatorname{d}y) & + & |
| + | (x) & (\operatorname{d}x)\ \operatorname{d}y & + & |
| + | ((x, y)) & \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | y & \partial x & + & x & \partial y \\ |
| + | (y) & \partial x & + & x & \partial y \\ |
| + | y & \partial x & + & (x) & \partial y \\ |
| + | (y) & \partial x & + & (x) & \partial y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $f_{15}$ & |
| + | $((~))$ & |
| + | $0$ & |
| + | $0$ \\ |
| + | \hline |
| + | \end{tabular} |
| + | </pre> |
| + | |
| + | =Appendix 3 @ PlanetMath : TeX Format= |
| + | |
| + | <pre> |
| + | \PMlinkescapephrase{image} |
| + | \PMlinkescapephrase{Image} |
| + | \PMlinkescapephrase{mode} |
| + | \PMlinkescapephrase{Mode} |
| + | |
| + | \textbf{Note.} The following Tables are best viewed in the Page Image mode. |
| + | |
| + | \tableofcontents |
| + | |
| + | \subsection{Detail of Calculation for the Difference Map} |
| | | |
| \begin{quote}\begin{tabular}{||c||c|c|c|c||} | | \begin{quote}\begin{tabular}{||c||c|c|c|c||} |
− | \multicolumn{5}{c}{\textbf{Table A7. Detail of Calculation for} $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt] | + | \multicolumn{5}{c}{\textbf{Detail of Calculation for} $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt] |
| \hline\hline | | \hline\hline |
| & | | & |