Line 426: |
Line 426: |
| \multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\ | | \multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\ |
| \hline | | \hline |
− | $\mathcal{L}_1$ & $\mathcal{L}_2$ && | + | $\mathcal{L}_1$ & |
− | $\mathcal{L}_3$ & $\mathcal{L}_4$ & | + | $\mathcal{L}_2$ && |
− | $\mathcal{L}_5$ & $\mathcal{L}_6$ \\ | + | $\mathcal{L}_3$ & |
| + | $\mathcal{L}_4$ & |
| + | $\mathcal{L}_5$ & |
| + | $\mathcal{L}_6$ \\ |
| \hline | | \hline |
| & & $x =$ & 1 1 0 0 & & & \\ | | & & $x =$ & 1 1 0 0 & & & \\ |
| & & $y =$ & 1 0 1 0 & & & \\ | | & & $y =$ & 1 0 1 0 & & & \\ |
| \hline | | \hline |
− | $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ | + | $f_{0}$ & |
− | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ | + | $f_{0000}$ && |
− | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ without $x$ & $\lnot x \land y$ \\ | + | 0 0 0 0 & |
− | $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ | + | $(~)$ & |
− | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ without $y$ & $x \land \lnot y$ \\ | + | $\operatorname{false}$ & |
− | $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ | + | $0$ \\ |
− | $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ | + | $f_{1}$ & |
− | $f_{7}$ & $f_{0111}$ & & 0 1 1 1 & $(x\ y)$ & not both $x$ and $y$ & $\lnot x \lor \lnot y$ \\ | + | $f_{0001}$ && |
| + | 0 0 0 1 & |
| + | $(x)(y)$ & |
| + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & |
| + | $\lnot x \land \lnot y$ \\ |
| + | $f_{2}$ & |
| + | $f_{0010}$ && |
| + | 0 0 1 0 & |
| + | $(x)\ y$ & |
| + | $y\ \operatorname{without}\ x$ & |
| + | $\lnot x \land y$ \\ |
| + | $f_{3}$ & |
| + | $f_{0011}$ && |
| + | 0 0 1 1 & |
| + | $(x)$ & |
| + | $\operatorname{not}\ x$ & |
| + | $\lnot x$ \\ |
| + | $f_{4}$ & |
| + | $f_{0100}$ && |
| + | 0 1 0 0 & |
| + | $x\ (y)$ & |
| + | $x\ \operatorname{without}\ y$ & |
| + | $x \land \lnot y$ \\ |
| + | $f_{5}$ & |
| + | $f_{0101}$ && |
| + | 0 1 0 1 & |
| + | $(y)$ & |
| + | $\operatorname{not}\ y$ & |
| + | $\lnot y$ \\ |
| + | $f_{6}$ & |
| + | $f_{0110}$ && |
| + | 0 1 1 0 & |
| + | $(x,\ y)$ & |
| + | $x\ \operatorname{not~equal~to}\ y$ & |
| + | $x \ne y$ \\ |
| + | $f_{7}$ & |
| + | $f_{0111}$ && |
| + | 0 1 1 1 & |
| + | $(x\ y)$ & |
| + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & |
| + | $\lnot x \lor \lnot y$ \\ |
| \hline | | \hline |
− | $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ | + | $f_{8}$ & |
− | $f_{9}$ & $f_{1001}$ & & 1 0 0 1 & $((x,\ y))$ & $x$ equal to $y$ & $x = y$ \\ | + | $f_{1000}$ && |
− | $f_{10}$ & $f_{1010}$ & & 1 0 1 0 & $y$ & $y$ & $y$ \\ | + | 1 0 0 0 & |
− | $f_{11}$ & $f_{1011}$ & & 1 0 1 1 & $(x\ (y))$ & not $x$ without $y$ & $x \Rightarrow y$ \\ | + | $x\ y$ & |
− | $f_{12}$ & $f_{1100}$ & & 1 1 0 0 & $x$ & $x$ & $x$ \\ | + | $x\ \operatorname{and}\ y$ & |
− | $f_{13}$ & $f_{1101}$ & & 1 1 0 1 & $((x)\ y)$ & not $y$ without $x$ & $x \Leftarrow y$ \\ | + | $x \land y$ \\ |
− | $f_{14}$ & $f_{1110}$ & & 1 1 1 0 & $((x)(y))$ & $x$ or $y$ & $x \lor y$ \\ | + | $f_{9}$ & |
− | $f_{15}$ & $f_{1111}$ & & 1 1 1 1 & $((~))$ & true & $1$ \\ | + | $f_{1001}$ && |
| + | 1 0 0 1 & |
| + | $((x,\ y))$ & |
| + | $x\ \operatorname{equal~to}\ y$ & |
| + | $x = y$ \\ |
| + | $f_{10}$ & |
| + | $f_{1010}$ && |
| + | 1 0 1 0 & |
| + | $y$ & |
| + | $y$ & |
| + | $y$ \\ |
| + | $f_{11}$ & |
| + | $f_{1011}$ && |
| + | 1 0 1 1 & |
| + | $(x\ (y))$ & |
| + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & |
| + | $x \Rightarrow y$ \\ |
| + | $f_{12}$ & |
| + | $f_{1100}$ && |
| + | 1 1 0 0 & |
| + | $x$ & |
| + | $x$ & |
| + | $x$ \\ |
| + | $f_{13}$ & |
| + | $f_{1101}$ && |
| + | 1 1 0 1 & |
| + | $((x)\ y)$ & |
| + | $\operatorname{not}\ y\ \operatorname{without}\ x$ & |
| + | $x \Leftarrow y$ \\ |
| + | $f_{14}$ & |
| + | $f_{1110}$ && |
| + | 1 1 1 0 & |
| + | $((x)(y))$ & |
| + | $x\ \operatorname{or}\ y$ & |
| + | $x \lor y$ \\ |
| + | $f_{15}$ & |
| + | $f_{1111}$ && |
| + | 1 1 1 1 & |
| + | $((~))$ & |
| + | $\operatorname{true}$ & |
| + | $1$ \\ |
| \hline | | \hline |
| \end{tabular}\end{quote} | | \end{tabular}\end{quote} |
Line 460: |
Line 543: |
| \multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\ | | \multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\ |
| \hline | | \hline |
− | $\mathcal{L}_1$ & $\mathcal{L}_2$ && | + | $\mathcal{L}_1$ & |
− | $\mathcal{L}_3$ & $\mathcal{L}_4$ & | + | $\mathcal{L}_2$ && |
− | $\mathcal{L}_5$ & $\mathcal{L}_6$ \\ | + | $\mathcal{L}_3$ & |
| + | $\mathcal{L}_4$ & |
| + | $\mathcal{L}_5$ & |
| + | $\mathcal{L}_6$ \\ |
| \hline | | \hline |
| & & $x =$ & 1 1 0 0 & & & \\ | | & & $x =$ & 1 1 0 0 & & & \\ |
| & & $y =$ & 1 0 1 0 & & & \\ | | & & $y =$ & 1 0 1 0 & & & \\ |
| \hline | | \hline |
− | $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ | + | $f_{0}$ & |
| + | $f_{0000}$ && |
| + | 0 0 0 0 & |
| + | $(~)$ & |
| + | $\operatorname{false}$ & |
| + | $0$ \\ |
| \hline | | \hline |
− | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ | + | $f_{1}$ & |
− | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ without $x$ & $\lnot x \land y$ \\ | + | $f_{0001}$ && |
− | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ without $y$ & $x \land \lnot y$ \\ | + | 0 0 0 1 & |
− | $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ | + | $(x)(y)$ & |
| + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & |
| + | $\lnot x \land \lnot y$ \\ |
| + | $f_{2}$ & |
| + | $f_{0010}$ && |
| + | 0 0 1 0 & |
| + | $(x)\ y$ & |
| + | $y\ \operatorname{without}\ x$ & |
| + | $\lnot x \land y$ \\ |
| + | $f_{4}$ & |
| + | $f_{0100}$ && |
| + | 0 1 0 0 & |
| + | $x\ (y)$ & |
| + | $x\ \operatorname{without}\ y$ & |
| + | $x \land \lnot y$ \\ |
| + | $f_{8}$ & |
| + | $f_{1000}$ && |
| + | 1 0 0 0 & |
| + | $x\ y$ & |
| + | $x\ \operatorname{and}\ y$ & |
| + | $x \land y$ \\ |
| \hline | | \hline |
− | $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ | + | $f_{3}$ & |
− | $f_{12}$ & $f_{1100}$ & & 1 1 0 0 & $x$ & $x$ & $x$ \\ | + | $f_{0011}$ && |
| + | 0 0 1 1 & |
| + | $(x)$ & |
| + | $\operatorname{not}\ x$ & |
| + | $\lnot x$ \\ |
| + | $f_{12}$ & |
| + | $f_{1100}$ && |
| + | 1 1 0 0 & |
| + | $x$ & |
| + | $x$ & |
| + | $x$ \\ |
| \hline | | \hline |
− | $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ | + | $f_{6}$ & |
− | $f_{9}$ & $f_{1001}$ & & 1 0 0 1 & $((x,\ y))$ & $x$ equal to $y$ & $x = y$ \\ | + | $f_{0110}$ && |
| + | 0 1 1 0 & |
| + | $(x,\ y)$ & |
| + | $x\ \operatorname{not~equal~to}\ y$ & |
| + | $x \ne y$ \\ |
| + | $f_{9}$ & |
| + | $f_{1001}$ && |
| + | 1 0 0 1 & |
| + | $((x,\ y))$ & |
| + | $x\ \operatorname{equal~to}\ y$ & |
| + | $x = y$ \\ |
| \hline | | \hline |
− | $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ | + | $f_{5}$ & |
− | $f_{10}$ & $f_{1010}$ & & 1 0 1 0 & $y$ & $y$ & $y$ \\ | + | $f_{0101}$ && |
| + | 0 1 0 1 & |
| + | $(y)$ & |
| + | $\operatorname{not}\ y$ & |
| + | $\lnot y$ \\ |
| + | $f_{10}$ & |
| + | $f_{1010}$ && |
| + | 1 0 1 0 & |
| + | $y$ & |
| + | $y$ & |
| + | $y$ \\ |
| \hline | | \hline |
− | $f_{7}$ & $f_{0111}$ & & 0 1 1 1 & $(x\ y)$ & not both $x$ and $y$ & $\lnot x \lor \lnot y$ \\ | + | $f_{7}$ & |
− | $f_{11}$ & $f_{1011}$ & & 1 0 1 1 & $(x\ (y))$ & not $x$ without $y$ & $x \Rightarrow y$ \\ | + | $f_{0111}$ && |
− | $f_{13}$ & $f_{1101}$ & & 1 1 0 1 & $((x)\ y)$ & not $y$ without $x$ & $x \Leftarrow y$ \\ | + | 0 1 1 1 & |
− | $f_{14}$ & $f_{1110}$ & & 1 1 1 0 & $((x)(y))$ & $x$ or $y$ & $x \lor y$ \\ | + | $(x\ y)$ & |
| + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & |
| + | $\lnot x \lor \lnot y$ \\ |
| + | $f_{11}$ & |
| + | $f_{1011}$ && |
| + | 1 0 1 1 & |
| + | $(x\ (y))$ & |
| + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & |
| + | $x \Rightarrow y$ \\ |
| + | $f_{13}$ & |
| + | $f_{1101}$ && |
| + | 1 1 0 1 & |
| + | $((x)\ y)$ & |
| + | $\operatorname{not}\ y\ \operatorname{without}\ x$ & |
| + | $x \Leftarrow y$ \\ |
| + | $f_{14}$ & |
| + | $f_{1110}$ && |
| + | 1 1 1 0 & |
| + | $((x)(y))$ & |
| + | $x\ \operatorname{or}\ y$ & |
| + | $x \lor y$ \\ |
| \hline | | \hline |
− | $f_{15}$ & $f_{1111}$ & & 1 1 1 1 & $((~))$ & true & $1$ \\ | + | $f_{15}$ & |
| + | $f_{1111}$ && |
| + | 1 1 1 1 & |
| + | $((~))$ & |
| + | $\operatorname{true}$ & |
| + | $1$ \\ |
| \hline | | \hline |
| \end{tabular}\end{quote} | | \end{tabular}\end{quote} |