Line 435: |
Line 435: |
| $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ | | $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ |
| $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ | | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ |
− | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ and not $x$ & $\lnot x \land y$ \\ | + | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ without $x$ & $\lnot x \land y$ \\ |
| $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ | | $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ |
− | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ and not $y$ & $x \land \lnot y$ \\ | + | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ without $y$ & $x \land \lnot y$ \\ |
| $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ | | $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ |
| $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ | | $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ |
Line 470: |
Line 470: |
| \hline | | \hline |
| $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ | | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ |
− | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ and not $x$ & $\lnot x \land y$ \\ | + | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ without $x$ & $\lnot x \land y$ \\ |
− | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ and not $y$ & $x \land \lnot y$ \\ | + | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ without $y$ & $x \land \lnot y$ \\ |
| $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ | | $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ |
| \hline | | \hline |
Line 568: |
Line 568: |
| \hline | | \hline |
| $f_{15}$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ \\ | | $f_{15}$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ \\ |
| + | \hline |
| + | \end{tabular}\end{quote} |
| + | |
| + | \subsection{Table A5. $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$} |
| + | |
| + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A5. $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$} \\ |
| + | \hline |
| + | & $f$ & |
| + | $\operatorname{E}f|_{x\ y}$ & |
| + | $\operatorname{E}f|_{x (y)}$ & |
| + | $\operatorname{E}f|_{(x) y}$ & |
| + | $\operatorname{E}f|_{(x)(y)}$ \\ |
| + | \hline |
| + | $f_{0}$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ \\ |
| + | \hline |
| + | $f_{1}$ & |
| + | $(x)(y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $(\operatorname{d}x)(\operatorname{d}y)$ \\ |
| + | $f_{2}$ & |
| + | $(x)\ y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $(\operatorname{d}x)(\operatorname{d}y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ \\ |
| + | $f_{4}$ & |
| + | $x\ (y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $(\operatorname{d}x)(\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ \\ |
| + | $f_{8}$ & |
| + | $x\ y$ & |
| + | $(\operatorname{d}x)(\operatorname{d}y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ \\ |
| + | \hline |
| + | $f_{3}$ & |
| + | $(x)$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ & |
| + | $(\operatorname{d}x)$ & |
| + | $(\operatorname{d}x)$ \\ |
| + | $f_{12}$ & |
| + | $x$ & |
| + | $(\operatorname{d}x)$ & |
| + | $(\operatorname{d}x)$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ \\ |
| + | \hline |
| + | $f_{6}$ & |
| + | $(x,\ y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $((\operatorname{d}x,\ \operatorname{d}y))$ & |
| + | $((\operatorname{d}x,\ \operatorname{d}y))$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ |
| + | $f_{9}$ & |
| + | $((x,\ y))$ & |
| + | $((\operatorname{d}x,\ \operatorname{d}y))$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $((\operatorname{d}x,\ \operatorname{d}y))$ \\ |
| + | \hline |
| + | $f_{5}$ & |
| + | $(y)$ & |
| + | $\operatorname{d}y$ & |
| + | $(\operatorname{d}y)$ & |
| + | $\operatorname{d}y$ & |
| + | $(\operatorname{d}y)$ \\ |
| + | $f_{10}$ & |
| + | $y$ & |
| + | $(\operatorname{d}y)$ & |
| + | $\operatorname{d}y$ & |
| + | $(\operatorname{d}y)$ & |
| + | $\operatorname{d}y$ \\ |
| + | \hline |
| + | $f_{7}$ & |
| + | $(x\ y)$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x\ (\operatorname{d}y))$ & |
| + | $(\operatorname{d}x\ \operatorname{d}y)$ \\ |
| + | $f_{11}$ & |
| + | $(x\ (y))$ & |
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $(\operatorname{d}x\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x\ (\operatorname{d}y))$ \\ |
| + | $f_{13}$ & |
| + | $((x)\ y)$ & |
| + | $(\operatorname{d}x\ (\operatorname{d}y))$ & |
| + | $(\operatorname{d}x\ \operatorname{d}y)$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ \\ |
| + | $f_{14}$ & |
| + | $((x)(y))$ & |
| + | $(\operatorname{d}x\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x\ (\operatorname{d}y))$ & |
| + | $((\operatorname{d}x)\ \operatorname{d}y)$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ |
| + | \hline |
| + | $f_{15}$ & |
| + | $((~))$ & |
| + | $((~))$ & |
| + | $((~))$ & |
| + | $((~))$ & |
| + | $((~))$ \\ |
| + | \hline |
| + | \end{tabular}\end{quote} |
| + | |
| + | \subsection{Table A6. $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$} |
| + | |
| + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} |
| + | \multicolumn{6}{c}{Table A6. $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$} \\ |
| + | \hline |
| + | & $f$ & |
| + | $\operatorname{D}f|_{x\ y}$ & |
| + | $\operatorname{D}f|_{x (y)}$ & |
| + | $\operatorname{D}f|_{(x) y}$ & |
| + | $\operatorname{D}f|_{(x)(y)}$ \\ |
| + | \hline |
| + | $f_{0}$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ \\ |
| + | \hline |
| + | $f_{1}$ & |
| + | $(x)(y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ |
| + | $f_{2}$ & |
| + | $(x)\ y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ \\ |
| + | $f_{4}$ & |
| + | $x\ (y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ \\ |
| + | $f_{8}$ & |
| + | $x\ y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ \\ |
| + | \hline |
| + | $f_{3}$ & |
| + | $(x)$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ \\ |
| + | $f_{12}$ & |
| + | $x$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ & |
| + | $\operatorname{d}x$ \\ |
| + | \hline |
| + | $f_{6}$ & |
| + | $(x,\ y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ |
| + | $f_{9}$ & |
| + | $((x,\ y))$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ & |
| + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ |
| + | \hline |
| + | $f_{5}$ & |
| + | $(y)$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ \\ |
| + | $f_{10}$ & |
| + | $y$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ & |
| + | $\operatorname{d}y$ \\ |
| + | \hline |
| + | $f_{7}$ & |
| + | $(x\ y)$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ \\ |
| + | $f_{11}$ & |
| + | $(x\ (y))$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ \\ |
| + | $f_{13}$ & |
| + | $((x)\ y)$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ \\ |
| + | $f_{14}$ & |
| + | $((x)(y))$ & |
| + | $\operatorname{d}x\ \operatorname{d}y$ & |
| + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
| + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
| + | $((\operatorname{d}x)(\operatorname{d}y))$ \\ |
| + | \hline |
| + | $f_{15}$ & |
| + | $((~))$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ & |
| + | $(~)$ \\ |
| \hline | | \hline |
| \end{tabular}\end{quote} | | \end{tabular}\end{quote} |