Line 4,595: |
Line 4,595: |
| | | |
| I will first rationalize the novel grouping of propositional forms in the last set of Tables, as that will extend a gentle invitation to the mathematical subject of group theory, and demonstrate its relevance to differential logic in a strikingly apt and useful way. The data for that account is contained in Table 5. | | I will first rationalize the novel grouping of propositional forms in the last set of Tables, as that will extend a gentle invitation to the mathematical subject of group theory, and demonstrate its relevance to differential logic in a strikingly apt and useful way. The data for that account is contained in Table 5. |
− |
| |
− | <pre>
| |
− | Table 5. Ef Expanded Over Differential Features {dx, dy}
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | | f | T_11 f | T_10 f | T_01 f | T_00 f |
| |
− | | | | | | | |
| |
− | | | | Ef| dx dy | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_0 | () | () | () | () | () |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_1 | (x)(y) | x y | x (y) | (x) y | (x)(y) |
| |
− | | | | | | | |
| |
− | | f_2 | (x) y | x (y) | x y | (x)(y) | (x) y |
| |
− | | | | | | | |
| |
− | | f_4 | x (y) | (x) y | (x)(y) | x y | x (y) |
| |
− | | | | | | | |
| |
− | | f_8 | x y | (x)(y) | (x) y | x (y) | x y |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_3 | (x) | x | x | (x) | (x) |
| |
− | | | | | | | |
| |
− | | f_12 | x | (x) | (x) | x | x |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_6 | (x, y) | (x, y) | ((x, y)) | ((x, y)) | (x, y) |
| |
− | | | | | | | |
| |
− | | f_9 | ((x, y)) | ((x, y)) | (x, y) | (x, y) | ((x, y)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_5 | (y) | y | (y) | y | (y) |
| |
− | | | | | | | |
| |
− | | f_10 | y | (y) | y | (y) | y |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_7 | (x y) | ((x)(y)) | ((x) y) | (x (y)) | (x y) |
| |
− | | | | | | | |
| |
− | | f_11 | (x (y)) | ((x) y) | ((x)(y)) | (x y) | (x (y)) |
| |
− | | | | | | | |
| |
− | | f_13 | ((x) y) | (x (y)) | (x y) | ((x)(y)) | ((x) y) |
| |
− | | | | | | | |
| |
− | | f_14 | ((x)(y)) | (x y) | (x (y)) | ((x) y) | ((x)(y)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_15 | (()) | (()) | (()) | (()) | (()) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | |
| |
− | | Fixed Point Total | 4 | 4 | 4 | 16 |
| |
− | | | | | | |
| |
− | o-------------------o------------o------------o------------o------------o
| |
− | </pre>
| |
| | | |
| The shift operator ''E'' can be understood as enacting a substitution operation on the proposition that is given as its argument. In our immediate example, we have the following data and definition: | | The shift operator ''E'' can be understood as enacting a substitution operation on the proposition that is given as its argument. In our immediate example, we have the following data and definition: |