Line 2,573: |
Line 2,573: |
| | | |
| =Work Area 3= | | =Work Area 3= |
| + | |
| + | ===Propositional Forms on Two Variables=== |
| + | |
| + | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. |
| + | |
| + | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 1. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite" |
| + | | style="width:16%" | <math>\mathcal{L}_1</math> |
| + | | style="width:16%" | <math>\mathcal{L}_2</math> |
| + | | style="width:16%" | <math>\mathcal{L}_3</math> |
| + | | style="width:16%" | <math>\mathcal{L}_4</math> |
| + | | style="width:16%" | <math>\mathcal{L}_5</math> |
| + | | style="width:16%" | <math>\mathcal{L}_6</math> |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>x\!</math> : |
| + | | 1 1 0 0 |
| + | | |
| + | | |
| + | | |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>y\!</math> : |
| + | | 1 0 1 0 |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | <math>f_{0000}\!</math> |
| + | | 0 0 0 0 |
| + | | <math>(~)\!</math> |
| + | | false |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | | <math>f_{0001}\!</math> |
| + | | 0 0 0 1 |
| + | | <math>(x)(y)\!</math> |
| + | | neither x nor y |
| + | | <math>\lnot x \land \lnot y\!</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | | <math>f_{0010}\!</math> |
| + | | 0 0 1 0 |
| + | | <math>(x)\ y\!</math> |
| + | | y and not x |
| + | | <math>\lnot x \land y\!</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | | <math>f_{0011}\!</math> |
| + | | 0 0 1 1 |
| + | | <math>(x)\!</math> |
| + | | not x |
| + | | <math>\lnot x\!</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | | <math>f_{0100}\!</math> |
| + | | 0 1 0 0 |
| + | | <math>x\ (y)\!</math> |
| + | | x and not y |
| + | | <math>x \land \lnot y\!</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | | <math>f_{0101}\!</math> |
| + | | 0 1 0 1 |
| + | | <math>(y)\!</math> |
| + | | not y |
| + | | <math>\lnot y\!</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | | <math>f_{0110}\!</math> |
| + | | 0 1 1 0 |
| + | | <math>(x,\ y)\!</math> |
| + | | x not equal to y |
| + | | <math>x \ne y\!</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | | <math>f_{0111}\!</math> |
| + | | 0 1 1 1 |
| + | | <math>(x\ y)\!</math> |
| + | | not both x and y |
| + | | <math>\lnot x \lor \lnot y\!</math> |
| + | |- |
| + | | <math>f_{8}\!</math> |
| + | | <math>f_{1000}\!</math> |
| + | | 1 0 0 0 |
| + | | <math>x\ y\!</math> |
| + | | x and y |
| + | | <math>x \land y\!</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | | <math>f_{1001}\!</math> |
| + | | 1 0 0 1 |
| + | | <math>((x,\ y))\!</math> |
| + | | x equal to y |
| + | | <math>x = y\!</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | | <math>f_{1010}\!</math> |
| + | | 1 0 1 0 |
| + | | <math>y\!</math> |
| + | | y |
| + | | <math>y\!</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | | <math>f_{1011}\!</math> |
| + | | 1 0 1 1 |
| + | | <math>(x\ (y))\!</math> |
| + | | not x without y |
| + | | <math>x \Rightarrow y\!</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | | <math>f_{1100}\!</math> |
| + | | 1 1 0 0 |
| + | | <math>x\!</math> |
| + | | x |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | | <math>f_{1101}\!</math> |
| + | | 1 1 0 1 |
| + | | <math>((x)\ y)\!</math> |
| + | | not y without x |
| + | | <math>x \Leftarrow y\!</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | | <math>f_{1110}\!</math> |
| + | | 1 1 1 0 |
| + | | <math>((x)(y))\!</math> |
| + | | x or y |
| + | | <math>x \lor y\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> |
| + | | 1 1 1 1 |
| + | | <math>((~))\!</math> |
| + | | true |
| + | | <math>1\!</math> |
| + | |}<br> |
| + | |
| + | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 2. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
| + | |- style="background:ghostwhite" |
| + | | style="width:16%" | |
| + | | style="width:16%" | <math>f\!</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{xy}\!</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{x(y)}\!</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{(x)y}\!</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{(x)(y)}\!</math> |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | | <math>(x)(y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | | <math>(x) y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | | <math>x (y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{8}\!</math> |
| + | | <math>x y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | | <math>(x)\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | | <math>x\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | | <math>(x, y)\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | | <math>((x, y))\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | | <math>(y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | | <math>y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | | <math>(x y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | | <math>(x (y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | | <math>((x) y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | | <math>((x)(y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |}<br> |
| + | |
| + | <pre> |
| + | Table 3. Df Expanded Over Ordinary Features {x, y} |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | | f | Df | xy | Df | x(y) | Df | (x)y | Df | (x)(y)| |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_0 | () | () | () | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) | |
| + | | | | | | | | |
| + | | f_2 | (x) y | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy | |
| + | | | | | | | | |
| + | | f_4 | x (y) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) | |
| + | | | | | | | | |
| + | | f_8 | x y | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_3 | (x) | dx | dx | dx | dx | |
| + | | | | | | | | |
| + | | f_12 | x | dx | dx | dx | dx | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_6 | (x, y) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) | |
| + | | | | | | | | |
| + | | f_9 | ((x, y)) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_5 | (y) | dy | dy | dy | dy | |
| + | | | | | | | | |
| + | | f_10 | y | dy | dy | dy | dy | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_7 | (x y) | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy | |
| + | | | | | | | | |
| + | | f_11 | (x (y)) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) | |
| + | | | | | | | | |
| + | | f_13 | ((x) y) | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy | |
| + | | | | | | | | |
| + | | f_14 | ((x)(y)) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_15 | (()) | () | () | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | </pre> |
| + | <pre> |
| + | Table 4. Ef Expanded Over Differential Features {dx, dy} |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | | f | T_11 f | T_10 f | T_01 f | T_00 f | |
| + | | | | | | | | |
| + | | | | Ef| dx dy | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)| |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_0 | () | () | () | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_1 | (x)(y) | x y | x (y) | (x) y | (x)(y) | |
| + | | | | | | | | |
| + | | f_2 | (x) y | x (y) | x y | (x)(y) | (x) y | |
| + | | | | | | | | |
| + | | f_4 | x (y) | (x) y | (x)(y) | x y | x (y) | |
| + | | | | | | | | |
| + | | f_8 | x y | (x)(y) | (x) y | x (y) | x y | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_3 | (x) | x | x | (x) | (x) | |
| + | | | | | | | | |
| + | | f_12 | x | (x) | (x) | x | x | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_6 | (x, y) | (x, y) | ((x, y)) | ((x, y)) | (x, y) | |
| + | | | | | | | | |
| + | | f_9 | ((x, y)) | ((x, y)) | (x, y) | (x, y) | ((x, y)) | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_5 | (y) | y | (y) | y | (y) | |
| + | | | | | | | | |
| + | | f_10 | y | (y) | y | (y) | y | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_7 | (x y) | ((x)(y)) | ((x) y) | (x (y)) | (x y) | |
| + | | | | | | | | |
| + | | f_11 | (x (y)) | ((x) y) | ((x)(y)) | (x y) | (x (y)) | |
| + | | | | | | | | |
| + | | f_13 | ((x) y) | (x (y)) | (x y) | ((x)(y)) | ((x) y) | |
| + | | | | | | | | |
| + | | f_14 | ((x)(y)) | (x y) | (x (y)) | ((x) y) | ((x)(y)) | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_15 | (()) | (()) | (()) | (()) | (()) | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | |
| + | | Fixed Point Total | 4 | 4 | 4 | 16 | |
| + | | | | | | | |
| + | o-------------------o------------o------------o------------o------------o |
| + | </pre> |
| + | <pre> |
| + | Table 5. Df Expanded Over Differential Features {dx, dy} |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | | f | Df| dx dy | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)| |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_0 | () | () | () | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_1 | (x)(y) | ((x, y)) | (y) | (x) | () | |
| + | | | | | | | | |
| + | | f_2 | (x) y | (x, y) | y | (x) | () | |
| + | | | | | | | | |
| + | | f_4 | x (y) | (x, y) | (y) | x | () | |
| + | | | | | | | | |
| + | | f_8 | x y | ((x, y)) | y | x | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_3 | (x) | (()) | (()) | () | () | |
| + | | | | | | | | |
| + | | f_12 | x | (()) | (()) | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_6 | (x, y) | () | (()) | (()) | () | |
| + | | | | | | | | |
| + | | f_9 | ((x, y)) | () | (()) | (()) | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_5 | (y) | (()) | () | (()) | () | |
| + | | | | | | | | |
| + | | f_10 | y | (()) | () | (()) | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_7 | (x y) | ((x, y)) | y | x | () | |
| + | | | | | | | | |
| + | | f_11 | (x (y)) | (x, y) | (y) | x | () | |
| + | | | | | | | | |
| + | | f_13 | ((x) y) | (x, y) | y | (x) | () | |
| + | | | | | | | | |
| + | | f_14 | ((x)(y)) | ((x, y)) | (y) | (x) | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | | | | | | | | |
| + | | f_15 | (()) | () | () | () | () | |
| + | | | | | | | | |
| + | o------o------------o------------o------------o------------o------------o |
| + | </pre> |
| + | |
| + | If the medium truly is the message, the blank slate is the innate idea. |