Line 5,955: |
Line 5,955: |
| Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30). | | Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30). |
| | | |
− | <pre> | + | <br> |
− | o-----------------------------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p> |
− | | U |
| + | <p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p> |
− | | |
| |
− | | o-----------o o-----------o |
| |
− | | / \ / \ |
| |
− | | / o \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | o o o o |
| |
− | | | | | | |
| |
− | | | u | | v | |
| |
− | | | | | | |
| |
− | | o o o o |
| |
− | | \ \ / / |
| |
− | | \ \ / / |
| |
− | | \ o / |
| |
− | | \ / \ / |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | / \ / \
| |
− | o-------------------------o o-------------------------o
| |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\|
| |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\|
| |
− | | ////////o///////\ | |\\\\/ o \\\\\|
| |
− | | //////////\///////\ | |\\\/ /\\ \\\\|
| |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\|
| |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| |
− | | \///////\////////// | |\\\\ \\/ /\\\|
| |
− | | \///////o//////// | |\\\\\ o /\\\\|
| |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\|
| |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\|
| |
− | o-------------------------o o-------------------------o
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ f | | g /
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ | | /
| |
− | \ | | /
| |
− | o-------\----|---------------------------|----/-------o
| |
− | | X \ | | / |
| |
− | | \| |/ |
| |
− | | o-----------o o-----------o |
| |
− | | //////////////\ /\\\\\\\\\\\\\\ |
| |
− | | ////////////////o\\\\\\\\\\\\\\\\ |
| |
− | | /////////////////X\\\\\\\\\\\\\\\\\ |
| |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ |
| |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
| |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////o\\\\\\\\\\\\\\\/ |
| |
− | | \////////////// \\\\\\\\\\\\\\/ |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | Figure 61. Propositional Transformation | |
− | </pre> | |
| | | |
| Figure 62 extracts the gist of Figure 61, exemplifying a style of diagram that is adequate for most purposes. | | Figure 62 extracts the gist of Figure 61, exemplifying a style of diagram that is adequate for most purposes. |
| | | |
− | <pre> | + | <br> |
− | o-------------------------o o-------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p> |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| | + | <p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p> |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\|
| |
− | | ////////o///////\ | |\\\\/ o \\\\\|
| |
− | | //////////\///////\ | |\\\/ /\\ \\\\|
| |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\|
| |
− | | o///////o///o///////o | |\\o o\\\o o\\|
| |
− | | \///////\////////// | |\\\\ \\/ /\\\|
| |
− | | \///////o//////// | |\\\\\ o /\\\\|
| |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\|
| |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\|
| |
− | o-------------------------o o-------------------------o
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ f / \ g /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | o---------\-----/---------------------\-----/---------o
| |
− | | X \ / \ / |
| |
− | | \ / \ / |
| |
− | | o-----------o o-----------o |
| |
− | | //////////////\ /\\\\\\\\\\\\\\ |
| |
− | | ////////////////o\\\\\\\\\\\\\\\\ |
| |
− | | /////////////////X\\\\\\\\\\\\\\\\\ |
| |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ |
| |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
| |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////o\\\\\\\\\\\\\\\/ |
| |
− | | \////////////// \\\\\\\\\\\\\\/ |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | Figure 62. Propositional Transformation (Short Form) | |
− | </pre> | |
| | | |
| Figure 63 give a more complete picture of the transformation ''F'', showing how the points of ''U''<sup> •</sup> are transformed into points of ''X''<sup> •</sup>. The lines that cross from one universe to the other trace the action that ''F'' induces on points, in other words, they depict the aspect of the transformation that acts as a mapping from points to points, and chart its effects on the elements that are variously called cells, points, positions, or singular propositions. | | Figure 63 give a more complete picture of the transformation ''F'', showing how the points of ''U''<sup> •</sup> are transformed into points of ''X''<sup> •</sup>. The lines that cross from one universe to the other trace the action that ''F'' induces on points, in other words, they depict the aspect of the transformation that acts as a mapping from points to points, and chart its effects on the elements that are variously called cells, points, positions, or singular propositions. |
| | | |
− | <pre> | + | <br> |
− | o-----------------------------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p> |
− | |`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| + | <p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p> |
− | |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| |
− | |` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `|
| |
− | |` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `|
| |
− | |` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `|
| |
− | |` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `|
| |
− | |` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `|
| |
− | |` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `|
| |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| |
− | |` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `|
| |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| |
− | |` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `|
| |
− | |` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `|
| |
− | |` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `|
| |
− | |` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `|
| |
− | |` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `|
| |
− | |` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `|
| |
− | |` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| |
− | |` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| |
− | o-----------\----|---------|---------|----------------o
| |
− | " " \ | | | " "
| |
− | " " \ | | | " "
| |
− | " " \ | | | " "
| |
− | " " \| | | " "
| |
− | o-------------------------o \ | | o-------------------------o
| |
− | | U | |\ | | |`U```````````````````````|
| |
− | | o---o o---o | | \ | | |``````o---o```o---o``````|
| |
− | | /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````|
| |
− | | /'''''''o'''''''\ | | \ | | |````/ o \````|
| |
− | | /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```|
| |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
| |
− | | |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``|
| |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
| |
− | | \'''''''\'/'''''''/ | | \| | |```\ \`/ /```|
| |
− | | \'''''''o'''''''/ | | \ | |````\ o /````|
| |
− | | \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````|
| |
− | | o---o o---o | | | \ | |``````o---o```o---o``````|
| |
− | | | | | \ * |`````````````````````````|
| |
− | o-------------------------o | | \ / o-------------------------o
| |
− | \ | | | \ / | /
| |
− | \ ((u)(v)) | | | \/ | ((u, v)) /
| |
− | \ | | | /\ | /
| |
− | \ | | | / \ | /
| |
− | \ | | | / \ | /
| |
− | \ | | | / * | /
| |
− | \ | | | / | | /
| |
− | \ | | |/ | | /
| |
− | \ | | / | | /
| |
− | \ | | /| | | /
| |
− | o-------\----|---|-------/-|---------|---|----/-------o
| |
− | | X \ | | / | | | / |
| |
− | | \| | / | | |/ |
| |
− | | o---|----/--o | o-------|---o |
| |
− | | /' ' | ' / ' '\|/` ` ` ` | ` `\ |
| |
− | | / ' ' | '/' ' ' | ` ` ` ` | ` ` \ |
| |
− | | /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ |
| |
− | | / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ |
| |
− | | @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o |
| |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| |
− | | |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| |
| |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| |
− | | o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o |
| |
− | | \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / |
| |
− | | \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ |
| |
− | | \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / |
| |
− | | \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | Figure 63. Transformation of Positions | |
− | </pre> | |
| | | |
| Table 64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates. | | Table 64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates. |
Line 7,124: |
Line 6,929: |
| </font><br> | | </font><br> |
| | | |
− | <pre> | + | <br> |
− | o-----------------------------------o o-----------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p> |
− | | U | |`U`````````````````````````````````|
| + | <p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
− | | | |```````````````````````````````````|
| |
− | | ^ | |```````````````````````````````````|
| |
− | | | | |```````````````````````````````````|
| |
− | | o-------o | o-------o | |```````o-------o```o-------o```````|
| |
− | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ |
| |
− | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``|
| |
− | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```|
| |
− | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```|
| |
− | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``|
| |
− | | |```\```````|`````|```````/```| | |``| \ |`````| / |``|
| |
− | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``|
| |
− | | |```````````|`````|```````````| | |``| |`````| |``|
| |
− | | o```````````o` ^ `o```````````o | |``o o`````o o``|
| |
− | | \```````````\`|`/```````````/ | |```\ \```/ /```|
| |
− | | \```` ^ ````\|/```` ^ ````/ | |````\ ^ \`/ ^ /````|
| |
− | | \`````\`````|`````/`````/ | |`````\ \ o / /`````|
| |
− | | \`````\```/|\```/`````/ | |``````\ \ /`\ / /``````|
| |
− | | o-----\-o | o-/-----o | |```````o-----\-o```o-/-----o```````|
| |
− | | \ | / | |``````````````\`````/``````````````|
| |
− | | \ | / | |```````````````\```/```````````````|
| |
− | | \|/ | |````````````````\`/````````````````|
| |
− | | @ | |`````````````````@`````````````````|
| |
− | o-----------------------------------o o-----------------------------------o
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | \ ((u)(v)) / \ ((u, v)) /
| |
− | \ / \ /
| |
− | \ / \ /
| |
− | o----------\-------------/-----------------------\-------------/----------o
| |
− | | X \ / \ / | | |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | o----------------o o----------------o |
| |
− | | / \ / \ |
| |
− | | / o \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | o o o o |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | | f | | g | |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | o o o o |
| |
− | | \ \ / / |
| |
− | | \ \ / / |
| |
− | | \ \ / / |
| |
− | | \ \ / / |
| |
− | | \ \ / / |
| |
− | | \ o / |
| |
− | | \ / \ / |
| |
− | | o----------------o o----------------o |
| |
− | | |
| |
− | | |
| |
− | | |
| |
− | o-------------------------------------------------------------------------o
| |
− | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> | |
− | </pre> | |
| | | |
| Figure 70-a shows a graphical way of picturing the tangent functor map d''F'' = ‹d''f'', d''g''› for the transformation ''F'' = ‹''f'', ''g''› = ›((u)(v)), ((u, v))›. This amounts to the same information about d''f'' and d''g'' that was given in the computation summary of Tables 66-i and 66-ii, the relevant rows of which are repeated here: | | Figure 70-a shows a graphical way of picturing the tangent functor map d''F'' = ‹d''f'', d''g''› for the transformation ''F'' = ‹''f'', ''g''› = ›((u)(v)), ((u, v))›. This amounts to the same information about d''f'' and d''g'' that was given in the computation summary of Tables 66-i and 66-ii, the relevant rows of which are repeated here: |