Line 4,162: |
Line 4,162: |
| Figures 48-a through 48-d illustrate the proposition r''J'' = d<sup>2</sup>''J'', which forms the remainder map of ''J'' and also, in this instance, the second order differential of ''J''. | | Figures 48-a through 48-d illustrate the proposition r''J'' = d<sup>2</sup>''J'', which forms the remainder map of ''J'' and also, in this instance, the second order differential of ''J''. |
| | | |
− | <pre> | + | <br> |
− | o---------------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p> |
− | | | | + | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p> |
− | | o |
| |
− | | / \ |
| |
− | | / \ |
| |
− | | / \ |
| |
− | | o o |
| |
− | | / \ / \ |
| |
− | | / \ / \ |
| |
− | | / \ / \ |
| |
− | | o o o |
| |
− | | / \ /%\ / \ |
| |
− | | / \ /%%%\ / \ |
| |
− | | / \ /%%%%%\ / \ |
| |
− | | o o%%%%%%%o o |
| |
− | | / \ /%\%%%%%/%\ / \ |
| |
− | | / \ /%%%\%%%/%%%\ / \ |
| |
− | | / \ /%%%%%\%/%%%%%\ / \ |
| |
− | | o o%%%%%%%o%%%%%%%o o |
| |
− | | |\ / \%%%%%/%\%%%%%/ \ /| |
| |
− | | | \ / \%%%/%%%\%%%/ \ / | |
| |
− | | | \ / \%/%%%%%\%/ \ / | |
| |
− | | | o o%%%%%%%o o | |
| |
− | | | |\ / \%%%%%/ \ /| | |
| |
− | | | | \ / \%%%/ \ / | | |
| |
− | | | u | \ / \%/ \ / | v | |
| |
− | | o---+---o o o---+---o |
| |
− | | | \ / \ / | |
| |
− | | | \ / \ / | |
| |
− | | | du \ / \ / dv | |
| |
− | | o-------o o-------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | o |
| |
− | | |
| |
− | o---------------------------------------o
| |
− | Figure 48-a. Remainder of J (Areal) | |
− | </pre> | |
| | | |
− | <pre> | + | <br> |
− | o-----------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p> |
− | | |
| + | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p> |
− | | o-----o o-----o |
| |
− | | / \ / \ |
| |
− | | / o \ |
| |
− | | / /%\ \ |
| |
− | | o o%%%o o |
| |
− | @ | du |%%%| dv | |
| |
− | /| o o%%%o o |
| |
− | / | \ \%/ / |
| |
− | / | \ o / |
| |
− | / | \ / \ / |
| |
− | / | o-----o o-----o |
| |
− | / | |
| |
− | / o-----------------------------o
| |
− | /
| |
− | o----------------------------------------/----o o-----------------------------o
| |
− | | / | | |
| |
− | | @ | | o-----o o-----o |
| |
− | | | | / \ / \ |
| |
− | | o---------o o---------o | | / o \ |
| |
− | | / \ / \ | | / /%\ \ |
| |
− | | / o \ | | o o%%%o o |
| |
− | | / /`\ @------\-----------@ | du |%%%| dv | |
| |
− | | / /```\ \ | | o o%%%o o |
| |
− | | / /`````\ \ | | \ \%/ / |
| |
− | | / /```````\ \ | | \ o / |
| |
− | | o o`````````o o | | \ / \ / |
| |
− | | | |````@````| | | | o-----o o-----o |
| |
− | | | |`````\```| | | | |
| |
− | | | |``````\``| | | o-----------------------------o
| |
− | | | u |```````\`| v | |
| |
− | | | |````````\| | | o-----------------------------o
| |
− | | | |`````````| | | | |
| |
− | | | |`````````|\ | | | o-----o o-----o |
| |
− | | o o`````````o \ o | | / \ / \ |
| |
− | | \ \```````/ \ / | | / o \ |
| |
− | | \ \`````/ \ / | | / /%\ \ |
| |
− | | \ \```/ \ / | | o o%%%o o |
| |
− | | \ @------\-/---------\---------------@ | du |%%%| dv | |
| |
− | | \ o \ / | | o o%%%o o |
| |
− | | \ / \ / | | \ \%/ / |
| |
− | | o---------o o---------o \ | | \ o / |
| |
− | | \ | | \ / \ / |
| |
− | | \ | | o-----o o-----o |
| |
− | | \ | | |
| |
− | o----------------------------------------\----o o-----------------------------o
| |
− | \
| |
− | \ o-----------------------------o
| |
− | \ | |
| |
− | \ | o-----o o-----o |
| |
− | \ | / \ / \ |
| |
− | \ | / o \ |
| |
− | \ | / /%\ \ |
| |
− | \| o o%%%o o |
| |
− | @ | du |%%%| dv | |
| |
− | | o o%%%o o |
| |
− | | \ \%/ / |
| |
− | | \ o / |
| |
− | | \ / \ / |
| |
− | | o-----o o-----o |
| |
− | | |
| |
− | o-----------------------------o
| |
− | Figure 48-b. Remainder of J (Bundle) | |
− | </pre> | |
| | | |
− | <pre> | + | <br> |
− | o---------------------------------------------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p> |
− | | | | + | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p> |
− | | |
| |
− | | o-------------------o o-------------------o |
| |
− | | / \ / \ |
| |
− | | / o \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | o o o o |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | | | du dv | | |
| |
− | | | u @<------------------------->@ v | |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | o o @ o o |
| |
− | | \ \ ^ / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \|/ / |
| |
− | | \ du | dv / |
| |
− | | \ /|\ / |
| |
− | | o-------------------o | o-------------------o |
| |
− | | | |
| |
− | | | |
| |
− | | v |
| |
− | | @ |
| |
− | | |
| |
− | o---------------------------------------------------------------------o
| |
− | Figure 48-c. Remainder of J (Compact) | |
− | </pre> | |
| | | |
− | <pre> | + | <br> |
− | o-----------------------------------------------------------o
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p> |
− | | |
| + | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p> |
− | | u v |
| |
− | | @ |
| |
− | | ^ |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | du | dv |
| |
− | | u (v) @<----------|---------->@ (u) v |
| |
− | | du | dv |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | | |
| |
− | | v |
| |
− | | @ |
| |
− | | (u) (v) |
| |
− | | |
| |
− | o-----------------------------------------------------------o
| |
− | Figure 48-d. Remainder of J (Digraph) | |
− | </pre> | |
| | | |
| =====Summary of Conjunction===== | | =====Summary of Conjunction===== |