| Line 8,267: |
Line 8,267: |
| | The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps. | | The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps. |
| | | | |
| − | <pre> | + | <font face="courier new"> |
| − | Table 60. Propositional Transformation | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| − | o-------------o-------------o-------------o-------------o
| + | |+ '''Table 60. Propositional Transformation''' |
| − | | u | v | f | g | | + | |- style="background:paleturquoise" |
| − | o-------------o-------------o-------------o-------------o
| + | | width="25%" | ''u'' |
| − | | | | | | | + | | width="25%" | ''v'' |
| − | | 0 | 0 | 0 | 1 | | + | | width="25%" | ''f'' |
| − | | | | | | | + | | width="25%" | ''g'' |
| − | | 0 | 1 | 1 | 0 | | + | |- |
| − | | | | | | | + | | width="25%" | |
| − | | 1 | 0 | 1 | 0 | | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| − | | | | | | | + | | 0 |
| − | | 1 | 1 | 1 | 1 | | + | |- |
| − | | | | | | | + | | 0 |
| − | o-------------o-------------o-------------o-------------o
| + | |- |
| − | | | | ((u)(v)) | ((u, v)) | | + | | 1 |
| − | o-------------o-------------o-------------o-------------o
| + | |- |
| − | </pre> | + | | 1 |
| | + | |} |
| | + | | width="25%" | |
| | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 |
| | + | |- |
| | + | | 1 |
| | + | |- |
| | + | | 0 |
| | + | |- |
| | + | | 1 |
| | + | |} |
| | + | | width="25%" | |
| | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 0 |
| | + | |- |
| | + | | 1 |
| | + | |- |
| | + | | 1 |
| | + | |- |
| | + | | 1 |
| | + | |} |
| | + | | width="25%" | |
| | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| | + | | 1 |
| | + | |- |
| | + | | 0 |
| | + | |- |
| | + | | 0 |
| | + | |- |
| | + | | 1 |
| | + | |} |
| | + | |- |
| | + | | width="25%" | |
| | + | | width="25%" | |
| | + | | width="25%" | ((''u'')(''v'')) |
| | + | | width="25%" | ((''u'', ''v'')) |
| | + | |} |
| | + | </font><br> |
| | | | |
| | Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30). | | Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30). |