Line 8,267:
Line 8,267:
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.
−
<pre>
+
<font face="courier new">
−
Table 60. Propositional Transformation
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
o-------------o-------------o-------------o-------------o
+
|+ '''Table 60. Propositional Transformation'''
−
| u | v | f | g |
+
|- style="background:paleturquoise"
−
o-------------o-------------o-------------o-------------o
+
| width="25%" | ''u''
−
| | | | |
+
| width="25%" | ''v''
−
| 0 | 0 | 0 | 1 |
+
| width="25%" | ''f''
−
| | | | |
+
| width="25%" | ''g''
−
| 0 | 1 | 1 | 0 |
+
|-
−
| | | | |
+
| width="25%" |
−
| 1 | 0 | 1 | 0 |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| | | | |
+
| 0
−
| 1 | 1 | 1 | 1 |
+
|-
−
| | | | |
+
| 0
−
o-------------o-------------o-------------o-------------o
+
|-
−
| | | ((u)(v)) | ((u, v)) |
+
| 1
−
o-------------o-------------o-------------o-------------o
+
|-
−
</pre>
+
| 1
+
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 1
+
|-
+
| 1
+
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
|-
+
| width="25%" |
+
| width="25%" |
+
| width="25%" | ((''u'')(''v''))
+
| width="25%" | ((''u'', ''v''))
+
|}
+
</font><br>
Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30).
Figure 61 shows how one might paint a picture of the logical transformation ''F'' on the canvass that was earlier primed for this purpose (way back in Figure 30).