Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
Line 5,720: Line 5,720:  
Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there.  The synopsis formed in this way is presented in Table 51.  As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus.
 
Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there.  The synopsis formed in this way is presented in Table 51.  As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus.
   −
<pre>
+
<font face="courier new">
Table 51.  Computation of an Analytic Series in Symbolic Terms
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
o-----------o---------o------------o------------o------------o-----------o
+
|+ Table 51.  Computation of an Analytic Series in Symbolic Terms
| u     v |   J   |     EJ    |     DJ    |     dJ    |   d^2.J   |
+
|
o-----------o---------o------------o------------o------------o-----------o
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
|           |         |           |           |           |           |
+
| ''u'' || ''v''
| 0     0 |   0   |   du  dv  |   du  dv  |     ()    |   du dv  |
+
|}
|           |         |           |           |           |           |
+
|
| 0    1 |   0    |   du (dv)  |   du (dv)  |     du    |   du dv  |
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
|           |         |           |           |           |           |
+
| ''J''
| 1    0  |   0    | (du) dv  | (du) dv  |     dv    |   du dv  |
+
|}
|           |         |           |           |           |          |
+
|
| 1    1  |    1    |  (du)(dv)  | ((du)(dv)) | (du, dv) |   du dv  |
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
|           |         |           |           |           |           |
+
| E''J''
o-----------o---------o------------o------------o------------o-----------o
+
|}
</pre>
+
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
 +
| D''J''
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
 +
| d''J''
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
 +
| d<sup>2</sup>''J''
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| 0 || 0
 +
|-
 +
| 0 || 1
 +
|-
 +
| 1 || 0
 +
|-
 +
| 1 || 1
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| 0
 +
|-
 +
| 0
 +
|-
 +
| 0
 +
|-
 +
| 1
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| &nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;
 +
|-
 +
| &nbsp;d''u''&nbsp;(d''v'')
 +
|-
 +
| (d''u'')&nbsp;d''v''&nbsp;
 +
|-
 +
| (d''u'')(d''v'')
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| &nbsp;&nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;&nbsp;
 +
|-
 +
| &nbsp;&nbsp;d''u''&nbsp;(d''v'')&nbsp;
 +
|-
 +
| &nbsp;(d''u'')&nbsp;d''v''&nbsp;&nbsp;
 +
|-
 +
| ((d''u'')(d''v''))
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| ()
 +
|-
 +
| d''u''
 +
|-
 +
| d''v''
 +
|-
 +
| (d''u'', d''v'')
 +
|}
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
 +
| d''u'' d''v''
 +
|-
 +
| d''u'' d''v''
 +
|-
 +
| d''u'' d''v''
 +
|-
 +
| d''u'' d''v''
 +
|}
 +
|}
 +
</font><br>
    
Figures&nbsp;52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J''&nbsp;=&nbsp;''J''&nbsp;+&nbsp;D''J'' and D''J''&nbsp;=&nbsp;d''J''&nbsp;+&nbsp;r''J'' in two different styles of diagram.
 
Figures&nbsp;52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J''&nbsp;=&nbsp;''J''&nbsp;+&nbsp;D''J'' and D''J''&nbsp;=&nbsp;d''J''&nbsp;+&nbsp;r''J'' in two different styles of diagram.
12,080

edits

Navigation menu