Line 5,326: |
Line 5,326: |
| Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47. | | Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47. |
| | | |
− | <pre> | + | <font face="courier new"> |
− | Table 47. Computation of rJ | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
− | o-------------------------------------------------------------------------------o
| + | |+ Table 47. Computation of r''J'' |
− | | | | + | | |
− | | rJ = DJ + dJ | | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
− | | | | + | | width="6%" | r''J'' |
− | o-------------------------------------------------------------------------------o
| + | | width="5%" | = |
− | | | | + | | align="center" width="20%" | D''J'' |
− | | DJ = u v ((du)(dv)) + u (v)(du) dv + (u) v du (dv) + (u)(v) du dv | | + | | width="3%" | + |
− | | | | + | | align="center" width="20%" | d''J'' |
− | | dJ = u v (du, dv) + u (v) dv + (u) v du + (u)(v) . 0 | | + | | width="46%" | |
− | | | | + | |} |
− | o-------------------------------------------------------------------------------o
| + | |- |
− | | | | + | | |
− | | rJ = u v du dv + u (v) du dv + (u) v du dv + (u)(v) du dv | | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
− | | | | + | | width="6%" | D''J'' |
− | o-------------------------------------------------------------------------------o
| + | | width="25%" | = ''u'' ''v'' ((d''u'')(d''v'')) |
− | </pre> | + | | width="23%" | + ''u'' (''v'')(d''u'') d''v'' |
| + | | width="23%" | + (''u'') ''v'' d''u'' (d''v'') |
| + | | width="23%" | + (''u'')(''v'') d''u'' d''v'' |
| + | |- |
| + | | width="6%" | d''J'' |
| + | | width="25%" | = ''u'' ''v'' (d''u'', d''v'') |
| + | | width="23%" | + ''u'' (''v'') d''v'' |
| + | | width="23%" | + (''u'') ''v'' d''u'' |
| + | | width="23%" | + (''u'')(''v'') <math>\cdot</math> 0 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="6%" | r''J'' |
| + | | width="25%" | = ''u'' ''v'' d''u'' d''v'' |
| + | | width="23%" | + ''u'' (''v'') d''u'' d''v'' |
| + | | width="23%" | + (''u'') ''v'' d''u'' d''v'' |
| + | | width="23%" | + (''u'')(''v'') d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| | | |
| As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form: | | As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form: |