Line 5,326:
Line 5,326:
Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47.
Let us now recapitulate the story so far. In effect, we have been carrying out a decomposition of the enlarged proposition E''J'' in a series of stages. First, we considered the equation E''J'' = <math>\epsilon</math>''J'' + D''J'', which was involved in the definition of D''J'' as the difference E''J'' – <math>\epsilon</math>''J''. Next, we contemplated the equation D''J'' = d''J'' + r''J'', which expresses D''J'' in terms of two components, the differential d''J'' that was just extracted and the residual component r''J'' = D''J'' – d''J''. This remaining proposition r''J'' can be computed as shown in Table 47.
−
<pre>
+
<font face="courier new">
−
Table 47. Computation of rJ
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
−
o-------------------------------------------------------------------------------o
+
|+ Table 47. Computation of r''J''
−
| |
+
|
−
| rJ = DJ + dJ |
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
−
| |
+
| width="6%" | r''J''
−
o-------------------------------------------------------------------------------o
+
| width="5%" | =
−
| |
+
| align="center" width="20%" | D''J''
−
| DJ = u v ((du)(dv)) + u (v)(du) dv + (u) v du (dv) + (u)(v) du dv |
+
| width="3%" | +
−
| |
+
| align="center" width="20%" | d''J''
−
| dJ = u v (du, dv) + u (v) dv + (u) v du + (u)(v) . 0 |
+
| width="46%" |
−
| |
+
|}
−
o-------------------------------------------------------------------------------o
+
|-
−
| |
+
|
−
| rJ = u v du dv + u (v) du dv + (u) v du dv + (u)(v) du dv |
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
−
| |
+
| width="6%" | D''J''
−
o-------------------------------------------------------------------------------o
+
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
−
</pre>
+
| width="23%" | + ''u'' (''v'')(d''u'') d''v''
+
| width="23%" | + (''u'') ''v'' d''u'' (d''v'')
+
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
|-
+
| width="6%" | d''J''
+
| width="25%" | = ''u'' ''v'' (d''u'', d''v'')
+
| width="23%" | + ''u'' (''v'') d''v''
+
| width="23%" | + (''u'') ''v'' d''u''
+
| width="23%" | + (''u'')(''v'') <math>\cdot</math> 0
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
| width="6%" | r''J''
+
| width="25%" | = ''u'' ''v'' d''u'' d''v''
+
| width="23%" | + ''u'' (''v'') d''u'' d''v''
+
| width="23%" | + (''u'') ''v'' d''u'' d''v''
+
| width="23%" | + (''u'')(''v'') d''u'' d''v''
+
|}
+
|}
+
</font><br>
As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form:
As it happens, the remainder r''J'' falls under the description of a second order differential r''J'' = d<sup>2</sup>''J''. This means that the expansion of E''J'' in the form: