Line 946: |
Line 946: |
| | <math>4\!</math> | | | <math>4\!</math> |
| | <math>16\!</math> | | | <math>16\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | The shift operator <math>\mathrm{E}\!</math> can be understood as enacting a substitution operation on the propositional form <math>f(p, q)\!</math> that is given as its argument. In our present focus on propositional forms that involve two variables, we have the following type specifications and definitions: |
| + | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | |
| + | <math>\begin{array}{lcl} |
| + | \mathrm{E} ~:~ (X \to \mathbb{B}) |
| + | & \to & |
| + | (\mathrm{E}X \to \mathbb{B}) |
| + | \\[6pt] |
| + | \mathrm{E} ~:~ f(p, q) |
| + | & \mapsto & |
| + | \mathrm{E}f(p, q, \mathrm{d}p, \mathrm{d}q) |
| + | \\[6pt] |
| + | \mathrm{E}f(p, q, \mathrm{d}p, \mathrm{d}q) |
| + | & = & |
| + | f(p + \mathrm{d}p, q + \mathrm{d}q) |
| + | \\[6pt] |
| + | & = & |
| + | f( \texttt{(} p, \mathrm{d}p \texttt{)}, \texttt{(} q, \mathrm{d}q \texttt{)} ) |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | Evaluating <math>\mathrm{E}f\!</math> at particular values of <math>\mathrm{d}p\!</math> and <math>\mathrm{d}q,\!</math> for example, <math>\mathrm{d}p = i\!</math> and <math>\mathrm{d}q = j,\!</math> where <math>i\!</math> and <math>j\!</math> are values in <math>\mathbb{B},\!</math> produces the following result: |
| + | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | |
| + | <math>\begin{array}{lclcl} |
| + | \mathrm{E}_{ij} |
| + | & : & |
| + | (X \to \mathbb{B}) |
| + | & \to & |
| + | (X \to \mathbb{B}) |
| + | \\[6pt] |
| + | \mathrm{E}_{ij} |
| + | & : & |
| + | f |
| + | & \mapsto & |
| + | \mathrm{E}_{ij}f |
| + | \\[6pt] |
| + | \mathrm{E}_{ij}f |
| + | & = & |
| + | \mathrm{E}f|_{\mathrm{d}p = i, \mathrm{d}q = j} |
| + | & = & |
| + | f(p + i, q + j) |
| + | \\[6pt] |
| + | & & |
| + | & = & |
| + | f( \texttt{(} p, i \texttt{)}, \texttt{(} q, j \texttt{)} ) |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | The notation is a little awkward, but the data of Table A3 should make the sense clear. The important thing to observe is that <math>\mathrm{E}_{ij}\!</math> has the effect of transforming each proposition <math>f : X \to \mathbb{B}\!</math> into a proposition <math>f^\prime : X \to \mathbb{B}.\!</math> As it happens, the action of each <math>\mathrm{E}_{ij}\!</math> is one-to-one and onto, so the gang of four operators <math>\{ \mathrm{E}_{ij} : i, j \in \mathbb{B} \}\!</math> is an example of what is called a ''transformation group'' on the set of sixteen propositions. Bowing to a longstanding local and linear tradition, I will therefore redub the four elements of this group as <math>\mathrm{T}_{00}, \mathrm{T}_{01}, \mathrm{T}_{10}, \mathrm{T}_{11},\!</math> to bear in mind their transformative character, or nature, as the case may be. Abstractly viewed, this group of order four has the following operation table: |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
| + | |- style="height:50px" |
| + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | |
| + | <math>\cdot\!</math> |
| + | | width="22%" style="border-bottom:1px solid black" | |
| + | <math>\mathrm{T}_{00}\!</math> |
| + | | width="22%" style="border-bottom:1px solid black" | |
| + | <math>\mathrm{T}_{01}\!</math> |
| + | | width="22%" style="border-bottom:1px solid black" | |
| + | <math>\mathrm{T}_{10}\!</math> |
| + | | width="22%" style="border-bottom:1px solid black" | |
| + | <math>\mathrm{T}_{11}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\mathrm{T}_{00}\!</math> |
| + | | <math>\mathrm{T}_{00}\!</math> |
| + | | <math>\mathrm{T}_{01}\!</math> |
| + | | <math>\mathrm{T}_{10}\!</math> |
| + | | <math>\mathrm{T}_{11}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\mathrm{T}_{01}\!</math> |
| + | | <math>\mathrm{T}_{01}\!</math> |
| + | | <math>\mathrm{T}_{00}\!</math> |
| + | | <math>\mathrm{T}_{11}\!</math> |
| + | | <math>\mathrm{T}_{10}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\mathrm{T}_{10}\!</math> |
| + | | <math>\mathrm{T}_{10}\!</math> |
| + | | <math>\mathrm{T}_{11}\!</math> |
| + | | <math>\mathrm{T}_{00}\!</math> |
| + | | <math>\mathrm{T}_{01}\!</math> |
| + | |- style="height:50px" |
| + | | style="border-right:1px solid black" | <math>\mathrm{T}_{11}\!</math> |
| + | | <math>\mathrm{T}_{11}\!</math> |
| + | | <math>\mathrm{T}_{10}\!</math> |
| + | | <math>\mathrm{T}_{01}\!</math> |
| + | | <math>\mathrm{T}_{00}\!</math> |
| |} | | |} |
| | | |