Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
→‎Operational Representation: try next piece of section
Line 946: Line 946:  
| <math>4\!</math>
 
| <math>4\!</math>
 
| <math>16\!</math>
 
| <math>16\!</math>
 +
|}
 +
 +
<br>
 +
 +
The shift operator <math>\mathrm{E}\!</math> can be understood as enacting a substitution operation on the propositional form <math>f(p, q)\!</math> that is given as its argument.  In our present focus on propositional forms that involve two variables, we have the following type specifications and definitions:
 +
 +
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{array}{lcl}
 +
\mathrm{E} ~:~ (X \to \mathbb{B})
 +
& \to &
 +
(\mathrm{E}X \to \mathbb{B})
 +
\\[6pt]
 +
\mathrm{E} ~:~ f(p, q)
 +
& \mapsto &
 +
\mathrm{E}f(p, q, \mathrm{d}p, \mathrm{d}q)
 +
\\[6pt]
 +
\mathrm{E}f(p, q, \mathrm{d}p, \mathrm{d}q)
 +
& = &
 +
f(p + \mathrm{d}p, q + \mathrm{d}q)
 +
\\[6pt]
 +
& = &
 +
f( \texttt{(} p, \mathrm{d}p \texttt{)}, \texttt{(} q, \mathrm{d}q \texttt{)} )
 +
\end{array}\!</math>
 +
|}
 +
 +
Evaluating <math>\mathrm{E}f\!</math> at particular values of <math>\mathrm{d}p\!</math> and <math>\mathrm{d}q,\!</math> for example, <math>\mathrm{d}p = i\!</math> and <math>\mathrm{d}q = j,\!</math> where <math>i\!</math> and <math>j\!</math> are values in <math>\mathbb{B},\!</math> produces the following result:
 +
 +
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{array}{lclcl}
 +
\mathrm{E}_{ij}
 +
& : &
 +
(X \to \mathbb{B})
 +
& \to &
 +
(X \to \mathbb{B})
 +
\\[6pt]
 +
\mathrm{E}_{ij}
 +
& : &
 +
f
 +
& \mapsto &
 +
\mathrm{E}_{ij}f
 +
\\[6pt]
 +
\mathrm{E}_{ij}f
 +
& = &
 +
\mathrm{E}f|_{\mathrm{d}p = i, \mathrm{d}q = j}
 +
& = &
 +
f(p + i, q + j)
 +
\\[6pt]
 +
&  &
 +
& = &
 +
f( \texttt{(} p, i \texttt{)}, \texttt{(} q, j \texttt{)} )
 +
\end{array}\!</math>
 +
|}
 +
 +
The notation is a little awkward, but the data of Table&nbsp;A3 should make the sense clear.  The important thing to observe is that <math>\mathrm{E}_{ij}\!</math> has the effect of transforming each proposition <math>f : X \to \mathbb{B}\!</math> into a proposition <math>f^\prime : X \to \mathbb{B}.\!</math>  As it happens, the action of each <math>\mathrm{E}_{ij}\!</math> is one-to-one and onto, so the gang of four operators <math>\{ \mathrm{E}_{ij} : i, j \in \mathbb{B} \}\!</math> is an example of what is called a ''transformation group'' on the set of sixteen propositions.  Bowing to a longstanding local and linear tradition, I will therefore redub the four elements of this group as <math>\mathrm{T}_{00}, \mathrm{T}_{01}, \mathrm{T}_{10}, \mathrm{T}_{11},\!</math> to bear in mind their transformative character, or nature, as the case may be.  Abstractly viewed, this group of order four has the following operation table:
 +
 +
<br>
 +
 +
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|- style="height:50px"
 +
| width="12%" style="border-bottom:1px solid black; border-right:1px solid black" |
 +
<math>\cdot\!</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\mathrm{T}_{00}\!</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\mathrm{T}_{01}\!</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\mathrm{T}_{10}\!</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\mathrm{T}_{11}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\mathrm{T}_{00}\!</math>
 +
| <math>\mathrm{T}_{00}\!</math>
 +
| <math>\mathrm{T}_{01}\!</math>
 +
| <math>\mathrm{T}_{10}\!</math>
 +
| <math>\mathrm{T}_{11}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\mathrm{T}_{01}\!</math>
 +
| <math>\mathrm{T}_{01}\!</math>
 +
| <math>\mathrm{T}_{00}\!</math>
 +
| <math>\mathrm{T}_{11}\!</math>
 +
| <math>\mathrm{T}_{10}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\mathrm{T}_{10}\!</math>
 +
| <math>\mathrm{T}_{10}\!</math>
 +
| <math>\mathrm{T}_{11}\!</math>
 +
| <math>\mathrm{T}_{00}\!</math>
 +
| <math>\mathrm{T}_{01}\!</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\mathrm{T}_{11}\!</math>
 +
| <math>\mathrm{T}_{11}\!</math>
 +
| <math>\mathrm{T}_{10}\!</math>
 +
| <math>\mathrm{T}_{01}\!</math>
 +
| <math>\mathrm{T}_{00}\!</math>
 
|}
 
|}
  
12,080

edits

Navigation menu