MyWikiBiz, Author Your Legacy — Monday January 06, 2025
Jump to navigationJump to search
4,686 bytes added
, 18:20, 30 November 2015
Line 665: |
Line 665: |
| | | |
| We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math> | | We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math> |
| + | |
| + | ==Operational Representation== |
| + | |
| + | If you think that I linger in the realm of logical difference calculus out of sheer vacillation about getting down to the differential proper, it is probably out of a prior expectation that you derive from the art or the long-engrained practice of real analysis. But the fact is that ordinary calculus only rushes on to the sundry orders of approximation because the strain of comprehending the full import of <math>\mathrm{E}\!</math> and <math>\mathrm{D}\!</math> at once overwhelms its discrete and finite powers to grasp them. But here, in the fully serene idylls of [[zeroth order logic]], we find ourselves fit with the compass of a wit that is all we'd ever need to explore their effects with care. |
| + | |
| + | So let us do just that. |
| + | |
| + | I will first rationalize the novel grouping of propositional forms in the last set of Tables, as that will extend a gentle invitation to the mathematical subject of ''group theory'', and demonstrate its relevance to differential logic in a strikingly apt and useful way. The data for that account is contained in Table A3. |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A3.}~~\mathrm{E}f ~\text{Expanded over Differential Features}~ \{ \mathrm{d}p, \mathrm{d}q \}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{11} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{\mathrm{d}p~\mathrm{d}q}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{10} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{\mathrm{d}p(\mathrm{d}q)}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{01} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{(\mathrm{d}p)\mathrm{d}q}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{00} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{(\mathrm{d}p)(\mathrm{d}q)}\!</math></p> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | colspan="2" | <math>\text{Fixed Point Total}\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>16\!</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| ==Propositional Forms on Two Variables== | | ==Propositional Forms on Two Variables== |