Line 5,105:
Line 5,105:
Awaiting that determination, I proceed with what seems like the obvious course, and compute d''J'' according to the pattern in Table 45.
Awaiting that determination, I proceed with what seems like the obvious course, and compute d''J'' according to the pattern in Table 45.
−
<pre>
+
<font face="courier new">
−
Table 45. Computation of dJ
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
−
o-------------------------------------------------------------------------------o
+
|+ Table 45. Computation of d''J''
−
| |
+
|
−
| DJ = u v ((du)(dv)) + u (v)(du) dv + (u) v du (dv) + (u)(v) du dv |
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
−
| |
+
| width="6%" | D''J''
−
| => |
+
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
−
| |
+
| width="23%" | + ''u'' (''v'')(d''u'') d''v''
−
| dj = u v (du, dv) + u (v) dv + (u) v du + (u)(v) . 0 |
+
| width="23%" | + (''u'') ''v'' d''u'' (d''v'')
−
| |
+
| width="23%" | + (''u'')(''v'') d''u'' d''v''
−
o-------------------------------------------------------------------------------o
+
|-
−
</pre>
+
| width="6%" | ⇒
+
|-
+
| width="6%" | d''J''
+
| width="25%" | = ''u'' ''v'' (d''u'', d''v'')
+
| width="23%" | + ''u'' (''v'') d''v''
+
| width="23%" | + (''u'') ''v'' d''u''
+
| width="23%" | + (''u'')(''v'') <math>\cdot</math> 0
+
|}
+
|}
+
</font><br>
Figures 46-a through 46-d illustrate the proposition d''J'', rounded out in our usual array of prospects. This proposition of E''U''<sup> •</sup> is what we refer to as the (first order) differential of ''J'', and normally regard as ''the'' differential proposition corresponding to ''J''.
Figures 46-a through 46-d illustrate the proposition d''J'', rounded out in our usual array of prospects. This proposition of E''U''<sup> •</sup> is what we refer to as the (first order) differential of ''J'', and normally regard as ''the'' differential proposition corresponding to ''J''.