Line 3,040: |
Line 3,040: |
| Table 27 summarizes the thematic extensions of all propositions on two variables. Column 4 lists the equations of form (( ''f''<sup> ¢</sup> , ''f''<sup> ¢</sup>‹''u'', ''v''› )) and Column 5 simplifies these equations into the form of algebraic expressions. (As always, "+" refers to exclusive disjunction, and "''f'' " should be read as "''f''<sub>''i''</sub><sup>¢</sup>" in the body of the Table.) | | Table 27 summarizes the thematic extensions of all propositions on two variables. Column 4 lists the equations of form (( ''f''<sup> ¢</sup> , ''f''<sup> ¢</sup>‹''u'', ''v''› )) and Column 5 simplifies these equations into the form of algebraic expressions. (As always, "+" refers to exclusive disjunction, and "''f'' " should be read as "''f''<sub>''i''</sub><sup>¢</sup>" in the body of the Table.) |
| | | |
− | <pre> | + | <br><font face="courier new"> |
− | Table 27. Thematization of Bivariate Propositions | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | o---------o---------o----------o--------------------o--------------------o
| + | |+ Table 27. Thematization of Bivariate Propositions |
− | | u : 1 1 0 0 | f | theta (f) | theta (f) | | + | |- style="background:paleturquoise" |
− | | v : 1 0 1 0 | | | | | + | | |
− | o---------o---------o----------o--------------------o--------------------o
| + | {| align="right" style="background:paleturquoise; text-align:right" |
− | | | | | | | | + | | u : |
− | | f_0 | 0 0 0 0 | () | (( f , () )) | f + 1 |
| + | |- |
− | | | | | | | | + | | v : |
− | | f_1 | 0 0 0 1 | (u)(v) | (( f , (u)(v) )) | f + u + v + uv |
| + | |} |
− | | | | | | | | + | | |
− | | f_2 | 0 0 1 0 | (u) v | (( f , (u) v )) | f + v + uv + 1 | | + | {| style="background:paleturquoise" |
− | | | | | | | | + | | 1 1 0 0 |
− | | f_3 | 0 0 1 1 | (u) | (( f , (u) )) | f + u | | + | |- |
− | | | | | | | | + | | 1 0 1 0 |
− | | f_4 | 0 1 0 0 | u (v) | (( f , u (v) )) | f + u + uv + 1 |
| + | |} |
− | | | | | | | | + | | |
− | | f_5 | 0 1 0 1 | (v) | (( f , (v) )) | f + v |
| + | {| style="background:paleturquoise" |
− | | | | | | | | + | | f |
− | | f_6 | 0 1 1 0 | (u, v) | (( f , (u, v) )) | f + u + v + 1 | | + | |- |
− | | | | | | | | + | | |
− | | f_7 | 0 1 1 1 | (u v) | (( f , (u v) )) | f + uv | | + | |} |
− | | | | | | | | + | | |
− | o---------o---------o----------o--------------------o--------------------o
| + | {| style="background:paleturquoise" |
− | | | | | | | | + | | θf |
− | | f_8 | 1 0 0 0 | u v | (( f , u v )) | f + uv + 1 |
| + | |- |
− | | | | | | | | + | | |
− | | f_9 | 1 0 0 1 | ((u, v)) | (( f , ((u, v)) )) | f + u + v | | + | |} |
− | | | | | | | | + | | |
− | | f_10 | 1 0 1 0 | v | (( f , v )) | f + v + 1 | | + | {| style="background:paleturquoise" |
− | | | | | | | | + | | θf |
− | | f_11 | 1 0 1 1 | (u (v)) | (( f , (u (v)) )) | f + u + uv | | + | |- |
− | | | | | | | | + | | |
− | | f_12 | 1 1 0 0 | u | (( f , u )) | f + u + 1 |
| + | |} |
− | | | | | | | | + | |- |
− | | f_13 | 1 1 0 1 | ((u) v) | (( f , ((u) v) )) | f + v + uv |
| + | | |
− | | | | | | | | + | {| cellpadding="2" style="background:lightcyan" |
− | | f_14 | 1 1 1 0 | ((u)(v)) | (( f , ((u)(v)) )) | f + u + v + uv + 1 | | + | | f<sub>0</sub> |
− | | | | | | | | + | |- |
− | | f_15 | 1 1 1 1 | (()) | (( f , (()) )) | f | | + | | f<sub>1</sub> |
− | | | | | | | | + | |- |
− | o---------o---------o----------o--------------------o--------------------o
| + | | f<sub>2</sub> |
− | </pre> | + | |- |
− | | + | | f<sub>3</sub> |
− | In order to show what all of the thematic extensions from two dimensions to three dimensions look like in terms of coordinates, Tables 28 and 29 present ordinary truth tables for the functions ''f''<sub>''i''</sub> : '''B'''<sup>2</sup> → '''B''' and for the corresponding thematizations θ''f''<sub>''i''</sub> = φ<sub>''i''</sub> : '''B'''<sup>3</sup> → '''B'''. | + | |- |
− | | + | | f<sub>4</sub> |
− | <pre> | + | |- |
− | Table 28. Propositions on Two Variables | + | | f<sub>5</sub> |
− | o-------o-----o----------------------------------------------------------------o | + | |- |
− | | u v | | f f f f f f f f f f f f f f f f | | + | | f<sub>6</sub> |
− | | | | 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | | + | |- |
− | o-------o-----o----------------------------------------------------------------o | + | | f<sub>7</sub> |
− | | | | | | + | |} |
− | | 0 0 | | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | | + | | |
− | | | | | | + | {| cellpadding="2" style="background:lightcyan" |
− | | 0 1 | | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | | + | | 0 0 0 0 |
− | | | | | | + | |- |
− | | 1 0 | | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 | | + | | 0 0 0 1 |
− | | | | | | + | |- |
− | | 1 1 | | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 | | + | | 0 0 1 0 |
− | | | | | | + | |- |
− | o-------o-----o----------------------------------------------------------------o | + | | 0 0 1 1 |
− | </pre> | + | |- |
− | | + | | 0 1 0 0 |
− | <pre> | + | |- |
− | Table 29. Thematic Extensions of Bivariate Propositions | + | | 0 1 0 1 |
− | o-------o-----o----------------------------------------------------------------o | + | |- |
− | | u v | f^¢ |!f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! | | + | | 0 1 1 0 |
− | | | | 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | | + | |- |
− | o-------o-----o----------------------------------------------------------------o | + | | 0 1 1 1 |
− | | | | | | + | |} |
− | | 0 0 | 0 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | | + | | |
− | | | | | | + | {| cellpadding="2" style="background:lightcyan" |
− | | 0 0 | 1 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | | + | | () |
− | | | | | | + | |- |
− | | 0 1 | 0 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 | | + | | (u)(v) |
− | | | | | | + | |- |
− | | 0 1 | 1 | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | | + | | (u) v |
− | | | | | | + | |- |
− | | 1 0 | 0 | 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 | | + | | (u) |
− | | | | | | + | |- |
− | | 1 0 | 1 | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 | | + | | u (v) |
− | | | | | | + | |- |
− | | 1 1 | 0 | 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 | | + | | (v) |
− | | | | | | + | |- |
− | | 1 1 | 1 | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 | | + | | (u, v) |
− | | | | | | + | |- |
| + | | (u v) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | (( f , () )) |
| + | |- |
| + | | (( f , (u)(v) )) |
| + | |- |
| + | | (( f , (u) v )) |
| + | |- |
| + | | (( f , (u) )) |
| + | |- |
| + | | (( f , u (v) )) |
| + | |- |
| + | | (( f , (v) )) |
| + | |- |
| + | | (( f , (u, v) )) |
| + | |- |
| + | | (( f , (u v) )) |
| + | |} |
| + | | |
| + | {| align="left" cellpadding="2" style="background:lightcyan; text-align:left" |
| + | | f + 1 |
| + | |- |
| + | | f + u + v + uv |
| + | |- |
| + | | f + v + uv + 1 |
| + | |- |
| + | | f + u |
| + | |- |
| + | | f + u + uv + 1 |
| + | |- |
| + | | f + v |
| + | |- |
| + | | f + u + v + 1 |
| + | |- |
| + | | f + uv |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | f<sub>8</sub> |
| + | |- |
| + | | f<sub>9</sub> |
| + | |- |
| + | | f<sub>10</sub> |
| + | |- |
| + | | f<sub>11</sub> |
| + | |- |
| + | | f<sub>12</sub> |
| + | |- |
| + | | f<sub>13</sub> |
| + | |- |
| + | | f<sub>14</sub> |
| + | |- |
| + | | f<sub>15</sub> |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 1 0 0 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |- |
| + | | 1 0 1 0 |
| + | |- |
| + | | 1 0 1 1 |
| + | |- |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 1 0 1 |
| + | |- |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | u v |
| + | |- |
| + | | ((u, v)) |
| + | |- |
| + | | v |
| + | |- |
| + | | (u (v)) |
| + | |- |
| + | | u |
| + | |- |
| + | | ((u) v) |
| + | |- |
| + | | ((u)(v)) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | (( f , u v )) |
| + | |- |
| + | | (( f , ((u, v)) )) |
| + | |- |
| + | | (( f , v )) |
| + | |- |
| + | | (( f , (u (v)) )) |
| + | |- |
| + | | (( f , u )) |
| + | |- |
| + | | (( f , ((u) v) )) |
| + | |- |
| + | | (( f , ((u)(v)) )) |
| + | |- |
| + | | (( f , (()) )) |
| + | |} |
| + | | |
| + | {| align="left" cellpadding="2" style="background:lightcyan; text-align:left" |
| + | | f + uv + 1 |
| + | |- |
| + | | f + u + v |
| + | |- |
| + | | f + v + 1 |
| + | |- |
| + | | f + u + uv |
| + | |- |
| + | | f + u + 1 |
| + | |- |
| + | | f + v + uv |
| + | |- |
| + | | f + u + v + uv + 1 |
| + | |- |
| + | | f |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | In order to show what all of the thematic extensions from two dimensions to three dimensions look like in terms of coordinates, Tables 28 and 29 present ordinary truth tables for the functions ''f''<sub>''i''</sub> : '''B'''<sup>2</sup> → '''B''' and for the corresponding thematizations θ''f''<sub>''i''</sub> = φ<sub>''i''</sub> : '''B'''<sup>3</sup> → '''B'''. |
| + | |
| + | <pre> |
| + | Table 28. Propositions on Two Variables |
| + | o-------o-----o----------------------------------------------------------------o |
| + | | u v | | f f f f f f f f f f f f f f f f | |
| + | | | | 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | |
| + | o-------o-----o----------------------------------------------------------------o |
| + | | | | | |
| + | | 0 0 | | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | |
| + | | | | | |
| + | | 0 1 | | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | |
| + | | | | | |
| + | | 1 0 | | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 | |
| + | | | | | |
| + | | 1 1 | | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 | |
| + | | | | | |
| + | o-------o-----o----------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <pre> |
| + | Table 29. Thematic Extensions of Bivariate Propositions |
| + | o-------o-----o----------------------------------------------------------------o |
| + | | u v | f^¢ |!f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! !f! | |
| + | | | | 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | |
| + | o-------o-----o----------------------------------------------------------------o |
| + | | | | | |
| + | | 0 0 | 0 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | |
| + | | | | | |
| + | | 0 0 | 1 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | |
| + | | | | | |
| + | | 0 1 | 0 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 | |
| + | | | | | |
| + | | 0 1 | 1 | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | |
| + | | | | | |
| + | | 1 0 | 0 | 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 | |
| + | | | | | |
| + | | 1 0 | 1 | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 | |
| + | | | | | |
| + | | 1 1 | 0 | 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 | |
| + | | | | | |
| + | | 1 1 | 1 | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 | |
| + | | | | | |
| o-------o-----o----------------------------------------------------------------o | | o-------o-----o----------------------------------------------------------------o |
| </pre> | | </pre> |
Line 7,749: |
Line 7,924: |
| </pre> | | </pre> |
| | | |
− | <sharethis /> | + | {{aficionados}}<sharethis /> |
| + | |
| <!--semantic tags--> | | <!--semantic tags--> |
− | [[Author:=Jon Awbrey| ]] | + | [[Author:=Jon Awbrey| ]] |
− | [[Paper Name:=Differential Logic and Dynamic Systems| ]] | + | [[Paper Name:=Differential Logic and Dynamic Systems| ]] |
− | [[Paper Of::Directory:Jon Awbrey| ]] | + | [[Paper Of::Directory:Jon Awbrey| ]] |