Line 813: |
Line 813: |
| * 3 4 6 9 12 18 36 | | * 3 4 6 9 12 18 36 |
| * | | * |
| + | </pre> |
| + | |
| + | ==A109301== |
| + | |
| + | * [http://oeis.org/wiki/A109301 A109301] |
| + | |
| + | ===JPEG=== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" |
| + | | valign="bottom" | |
| + | <p>[[Image:Rooted Node Big.jpg|20px]]</p><br> |
| + | <p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 2 Big.jpg|40px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 3 Big.jpg|40px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 4 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 5 Big.jpg|40px]]</p><br> |
| + | <p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 6 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 7 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 8 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!3 \\ 8 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 9 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!2 \\ 9 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 10 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 11 Big.jpg|40px]]</p><br> |
| + | <p><math>\begin{array}{l} 5\!:\!1 \\ 11 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 12 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 13 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 6\!:\!1 \\ 13 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 14 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 15 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 16 Big.jpg|90px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!4 \\ 16 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 17 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 7\!:\!1 \\ 17 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 18 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 19 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 8\!:\!1 \\ 19 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 20 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 21 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 22 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 23 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 9\!:\!1 \\ 23 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 24 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 25 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 3\!:\!2 \\ 25 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 26 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 27 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!3 \\ 27 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 28 Big.jpg|130px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 29 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 10\!:\!1 \\ 29 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 30 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 31 Big.jpg|40px]]</p><br> |
| + | <p><math>\begin{array}{l} 11\!:\!1 \\ 31 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 32 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!5 \\ 32 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 33 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 34 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 35 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 36 Big.jpg|145px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 37 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 12\!:\!1 \\ 37 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 38 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 39 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 40 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 41 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 13\!:\!1 \\ 41 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 42 Big.jpg|145px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 43 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 14\!:\!1 \\ 43 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 44 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 45 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 46 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 47 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 15\!:\!1 \\ 47 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 48 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 49 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 4\!:\!2 \\ 49 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 50 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 51 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 52 Big.jpg|145px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 53 Big.jpg|90px]]</p><br> |
| + | <p><math>\begin{array}{l} 16\!:\!1 \\ 53 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 54 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 55 Big.jpg|80px]]</p><br> |
| + | <p><math>\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}</math></p> |
| + | |- |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 56 Big.jpg|130px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 57 Big.jpg|105px]]</p><br> |
| + | <p><math>\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 58 Big.jpg|120px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 59 Big.jpg|65px]]</p><br> |
| + | <p><math>\begin{array}{l} 17\!:\!1 \\ 59 \end{array}</math></p> |
| + | | valign="bottom" | |
| + | <p>[[Image:Rote 60 Big.jpg|155px]]</p><br> |
| + | <p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===ASCII=== |
| + | |
| + | <pre> |
| + | Comment |
| + | |
| + | * Table of Rotes and Primal Functions for Positive Integers from 1 to 40 |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o |
| + | * | | | |
| + | * o-o o-o o-o o-o |
| + | * | | | | |
| + | * O O O O O |
| + | * |
| + | * { } 1:1 2:1 1:2 3:1 |
| + | * |
| + | * 1 2 3 4 5 |
| + | * |
| + | * |
| + | * o-o o-o o-o |
| + | * | | | |
| + | * o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | |
| + | * o-o o-o o-o o-o o---o o-o o-o |
| + | * | | | | | | | |
| + | * O===O O O O O===O |
| + | * |
| + | * 1:1 2:1 4:1 1:3 2:2 1:1 3:1 |
| + | * |
| + | * 6 7 8 9 10 |
| + | * |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o o-o |
| + | * | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | | |
| + | * o-o o-o o-o o===o-o o-o o-o o-o o-o |
| + | * | | | | | | | | |
| + | * O O=====O O O===O O===O |
| + | * |
| + | * 5:1 1:2 2:1 6:1 1:1 4:1 2:1 3:1 |
| + | * |
| + | * 11 12 13 14 15 |
| + | * |
| + | * |
| + | * o-o o-o |
| + | * | | |
| + | * o-o o-o o-o o-o |
| + | * | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | |
| + | * o-o o-o o-o o---o o-o o-o o-o |
| + | * | | | | | | | |
| + | * O O O===O O O=====O |
| + | * |
| + | * 1:4 7:1 1:1 2:2 8:1 1:2 3:1 |
| + | * |
| + | * 16 17 18 19 20 |
| + | * |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | |
| + | * o-o o-o o-o o---o o-o o-o o-o o-o |
| + | * | | | | | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o o---o |
| + | * | | | | | | | | |
| + | * O===O O===O O O=====O O |
| + | * |
| + | * 2:1 4:1 1:1 5:1 9:1 1:3 2:1 3:2 |
| + | * |
| + | * 21 22 23 24 25 |
| + | * |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o o-o o-o |
| + | * | | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | | | | |
| + | * o-o o===o-o o---o o-o o-o o===o-o o-o o-o o-o |
| + | * | | | | | | | | | |
| + | * O===O O O=====O O O===O===O |
| + | * |
| + | * 1:1 6:1 2:3 1:2 4:1 10:1 1:1 2:1 3:1 |
| + | * |
| + | * 26 27 28 29 30 |
| + | * |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o o-o |
| + | * | | | | |
| + | * o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | | |
| + | * O O O===O O===O O===O |
| + | * |
| + | * 11:1 1:5 2:1 5:1 1:1 7:1 3:1 4:1 |
| + | * |
| + | * 31 32 33 34 35 |
| + | * |
| + | * |
| + | * o-o |
| + | * | |
| + | * o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | |
| + | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o |
| + | * | | | | | | | | | | | |
| + | * o-o o---o o=====o-o o-o o-o o-o o===o-o o-o o-o |
| + | * | | | | | | | | | |
| + | * O=====O O O===O O===O O=====O |
| + | * |
| + | * 1:2 2:2 12:1 1:1 8:1 2:1 6:1 1:3 3:1 |
| + | * |
| + | * 36 37 38 39 40 |
| + | * |
| + | * In these Figures, "extended lines of identity" like o===o |
| + | * indicate identified nodes and capital O is the root node. |
| + | * The rote height in gammas is found by finding the number |
| + | * of graphs of the following shape between the root and one |
| + | * of the highest nodes of the tree: |
| + | * o--o |
| + | * | |
| + | * o |
| + | * A sequence like this, that can be regarded as a nonnegative integer |
| + | * measure on positive integers, may have as many as 3 other sequences |
| + | * associated with it. Given that the fiber of a function f at n is all |
| + | * the domain elements that map to n, we always have the fiber minimum |
| + | * or minimum inverse function and may also have the fiber cardinality |
| + | * and the fiber maximum or maximum inverse function. For A109301, the |
| + | * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the |
| + | * first positive integer whose rote height is n, the fiber cardinality |
| + | * is A109300, giving the number of positive integers of rote height n, |
| + | * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving |
| + | * the last positive integer whose rote height is n, has the following |
| + | * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, |
| + | * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = |
| + | * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly |
| + | * 7.840858554516122655953405327738 x 10^371. |
| </pre> | | </pre> |