Sole sufficient operator

MyWikiBiz, Author Your Legacy — Sunday September 26, 2021
Jump to navigationJump to search

This page belongs to resource collections on Logic and Inquiry.

A sole sufficient operator or a sole sufficient connective is an operator that is sufficient by itself to generate all of the operators in a specified class of operators. In logic, it is a logical operator that suffices to generate all of the boolean-valued functions, \(f : X \to \mathbb{B} \), where \(X\!\) is an arbitrary set and where \(\mathbb{B}\) is a generic 2-element set, typically \(\mathbb{B} = \{ 0, 1 \} = \{ false, true \}\), in particular, to generate all of the finitary boolean functions, \( f : \mathbb{B}^k \to \mathbb{B} \).

Syllabus

Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Peer nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />