# Sole sufficient operator

A sole sufficient operator or a sole sufficient connective is an operator that is sufficient by itself to generate all of the operators in a specified class of operators. In logic, it is a logical operator that suffices to generate all of the boolean-valued functions, $$f : X \to \mathbb{B}$$, where $$X\!$$ is an arbitrary set and where $$\mathbb{B}$$ is a generic 2-element set, typically $$\mathbb{B} = \{ 0, 1 \} = \{ false, true \}$$, in particular, to generate all of the finitary boolean functions, $$f : \mathbb{B}^k \to \mathbb{B}$$.

## Syllabus

### Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

### Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

### Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

### Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

### Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

## Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />