Changes

HTML → LaTeX
Line 236: Line 236:  
Throwing in the lower default value permits the following abbreviations:
 
Throwing in the lower default value permits the following abbreviations:
   −
{| celpadding="4"
+
{| cellpadding="4"
 
| align="right" width="36" | 3.
 
| align="right" width="36" | 3.
 
| <math>\Upsilon  q  = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math>
 
| <math>\Upsilon  q  = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math>
Line 414: Line 414:  
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
 
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
   −
{| cellpadding="2"
+
<math>\begin{matrix}
| width="36" | &nbsp;
+
\alpha_0 f = 1             &
| <math>\alpha_{00} f = 1\!</math>
+
\mathit{iff}               &
| iff   || <math>f_{00} \Rightarrow f,</math>
+
f_0 \Rightarrow f         &
| iff   || <math>0 \Rightarrow f,</math>
+
\mathit{iff}              &
| hence || <math>\alpha_{00} f = 1\ \operatorname{for~all}\ f.</math>
+
0 \Rightarrow f.          &
|-
+
\mathrm{Therefore}         &
| &nbsp;
+
\alpha_0 f = 1             &
| <math>\alpha_{15} f = 1\!</math>
+
\operatorname{for~all}\ f. \\
| iff  || <math>f_{15} \Rightarrow f,</math>
+
\alpha_{15} f = 1         &
| iff   || <math>1 \Rightarrow f,</math>
+
\mathit{iff}              &
| hence || <math>\alpha_{15} f = 1 \Rightarrow f = 1.</math>
+
f_{15} \Rightarrow f       &
|-
+
\mathit{iff}              &
| &nbsp;
+
1 \Rightarrow f.          &
| <math>\beta_{00} f = 1\!</math>
+
\mathrm{Therefore}        &
| iff  || <math>f \Rightarrow f_{00},</math>
+
\alpha_{15} f = 1         &
| iff  || <math>f \Rightarrow 0,</math>
+
\mathit{iff} f = 1.       \\
| hence || <math>\beta_{00} f = 1 \Rightarrow f = 0.</math>
+
\beta_0 f = 1              &
|-
+
\mathit{iff}               &
| &nbsp;
+
f \Rightarrow f_0          &
| <math>\beta_{15} f = 1\!</math>
+
\mathit{iff}               &
| iff  || <math>f \Rightarrow f_{15},</math>
+
f \Rightarrow 0.          &
| iff   || <math>f \Rightarrow 1,</math>
+
\mathrm{Therefore}         &
| hence || <math>\beta_{15} f = 1\ \operatorname{for~all}\ f.</math>
+
\beta_0 f = 1             &
|}<br>
+
\mathit{iff} f = 0.       \\
 +
\beta_{15} f = 1           &
 +
\mathit{iff}              &
 +
f \Rightarrow f_{15}       &
 +
\mathit{iff}              &
 +
f \Rightarrow 1.          &
 +
\mathrm{Therefore}        &
 +
\beta_{15} f = 1           &
 +
\operatorname{for~all}\ f. \\
 +
\end{matrix}</math>
    
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
 
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
12,080

edits