Changes

MyWikiBiz, Author Your Legacy — Thursday May 02, 2024
Jump to navigationJump to search
→‎Example 1. A Square Rigging: sub [image/ascii graphic]
Line 1,266: Line 1,266:     
<br>
 
<br>
[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]
+
<p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p>
<center>'''Figure 12.  The Anchor'''</center>
+
<p><center><font size="+1">'''Figure 12.  The Anchor'''</font></center></p>
<br>
      
If we eliminate from view the regions of E<sup>2</sup>''X'' that are ruled out by the dynamic law d<sup>2</sup>''A''&nbsp;=&nbsp;(''A''), then what remains is the quotient structure that is shown in Figure 13.  This picture makes it easy to see that the dynamically allowable portion of the universe is partitioned between the properties ''A'' and d<sup>2</sup>''A''.  As it happens, this fact might have been expressed "right off the bat" by an equivalent formulation of the differential law, one that uses the exclusive disjunction to state the law as (''A'',&nbsp;d<sup>2</sup>''A'').
 
If we eliminate from view the regions of E<sup>2</sup>''X'' that are ruled out by the dynamic law d<sup>2</sup>''A''&nbsp;=&nbsp;(''A''), then what remains is the quotient structure that is shown in Figure 13.  This picture makes it easy to see that the dynamically allowable portion of the universe is partitioned between the properties ''A'' and d<sup>2</sup>''A''.  As it happens, this fact might have been expressed "right off the bat" by an equivalent formulation of the differential law, one that uses the exclusive disjunction to state the law as (''A'',&nbsp;d<sup>2</sup>''A'').
   −
<pre>
+
<br>
o-------------------------------------------------o
+
<p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p>
|                                                |
+
<p><center><font size="+1">'''Figure 13.  The Tiller'''</font></center></p>
|                                  ->-           |
  −
|                                  /  \          |
  −
|                                  \  /          |
  −
|                o-------------o  -o-          |
  −
|                /              \  ^            |
  −
|              /      dA        \/        A    |
  −
|              /                  /\              |
  −
|            /                  /  \            |
  −
|            o    o            /    o            |
  −
|            |    \          /    |            |
  −
|            |      \        /      |            |
  −
o------------|-------\-------/-------|------------o
  −
|            |        \    /        |            |
  −
|            |        \  /        |            |
  −
|            o          v /          o            |
  −
|            \          o          /            |
  −
|              \        ^        /              |
  −
|              \        |        /        d^2.|
  −
|                \      |      /               |
  −
|                o------|------o                |
  −
|                        |                        |
  −
|                        |                        |
  −
|                        o                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
Figure 13.  The Tiller
  −
</pre>
      
What we have achieved in this example is to give a differential description of a simple dynamic process.  In effect, we did this by embedding a directed graph, which can be taken to represent the state transitions of a finite automaton, in a dynamically allotted quotient structure that is created from a boolean lattice or an ''n''-cube by nullifying all of the regions that the dynamics outlaws.  With growth in the dimensions of our contemplated universes, it becomes essential, both for human comprehension and for computer implementation, that the dynamic structures of interest to us be represented not actually, by acquaintance, but virtually, by description.  In our present study, we are using the language of propositional calculus to express the relevant descriptions, and to comprehend the structure that is implicit in the subsets of a ''n''-cube without necessarily being forced to actualize all of its points.
 
What we have achieved in this example is to give a differential description of a simple dynamic process.  In effect, we did this by embedding a directed graph, which can be taken to represent the state transitions of a finite automaton, in a dynamically allotted quotient structure that is created from a boolean lattice or an ''n''-cube by nullifying all of the regions that the dynamics outlaws.  With growth in the dimensions of our contemplated universes, it becomes essential, both for human comprehension and for computer implementation, that the dynamic structures of interest to us be represented not actually, by acquaintance, but virtually, by description.  In our present study, we are using the language of propositional calculus to express the relevant descriptions, and to comprehend the structure that is implicit in the subsets of a ''n''-cube without necessarily being forced to actualize all of its points.
12,080

edits

Navigation menu