Changes

Line 129: Line 129:     
Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name.
 
Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name.
 +
 +
The operations of the forms <math>x^y = z\!</math> and <math>(x\!\Leftarrow\!y) = z</math> for <math>x, y, z \in \mathbb{B} = \{ 0, 1 \}</math> are tabulated below:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
 
|
 
|
 
<math>
 
<math>
\begin{bmatrix}
+
\begin{matrix}
 
0^0 & = & 1
 
0^0 & = & 1
 
\\
 
\\
Line 141: Line 143:  
\\
 
\\
 
1^1 & = & 1
 
1^1 & = & 1
\end{bmatrix}
+
\end{matrix}
 
\qquad\qquad\qquad
 
\qquad\qquad\qquad
\begin{bmatrix}
+
\begin{matrix}
 
0\!\Leftarrow\!0 & = & 1
 
0\!\Leftarrow\!0 & = & 1
 
\\
 
\\
Line 151: Line 153:  
\\
 
\\
 
1\!\Leftarrow\!1 & = & 1
 
1\!\Leftarrow\!1 & = & 1
\end{bmatrix}
+
\end{matrix}
 
</math>
 
</math>
 
|}
 
|}
12,089

edits