Line 3,375: |
Line 3,375: |
| If we lay out this analysis of conjunction on the spreadsheet model of relational composition, the gist of it is the diagonal extension of a 2-adic ''loving'' relation <math>L \subseteq X \times Y</math> to the corresponding 3-adic ''being and loving'' relation <math>L \subseteq X \times X \times Y,</math> which is then composed in a specific way with a 2-adic ''serving'' relation <math>S \subseteq X \times Y,</math> so as to determine the 2-adic relation <math>L,\!S \subseteq X \times Y.</math> Table 15 schematizes the associated constraints on tuples. | | If we lay out this analysis of conjunction on the spreadsheet model of relational composition, the gist of it is the diagonal extension of a 2-adic ''loving'' relation <math>L \subseteq X \times Y</math> to the corresponding 3-adic ''being and loving'' relation <math>L \subseteq X \times X \times Y,</math> which is then composed in a specific way with a 2-adic ''serving'' relation <math>S \subseteq X \times Y,</math> so as to determine the 2-adic relation <math>L,\!S \subseteq X \times Y.</math> Table 15 schematizes the associated constraints on tuples. |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre>
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | Table 15. Conjunction Via Composition | + | |+ '''Table 15. Conjunction Via Composition''' |
− | o---------o---------o---------o---------o
| + | |- |
− | | # !1! | !1! | !1! | | + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
− | o=========o=========o=========o=========o
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | | L, # X | X | Y | | + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | o---------o---------o---------o---------o
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | | S # | X | Y | | + | |- |
− | o---------o---------o---------o---------o
| + | | style="border-right:1px solid black" | <math>L,\!</math> |
− | | L , S # X | | Y | | + | | <math>X\!</math> |
− | o---------o---------o---------o---------o
| + | | <math>X\!</math> |
− | </pre> | + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>S\!</math> |
| + | | |
| + | | <math>X\!</math> |
| + | | <math>Y\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L,\!S</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| ===Commentary Note 10.11=== | | ===Commentary Note 10.11=== |