Changes

Line 3,154: Line 3,154:  
If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq T \times U \times V</math> with a 2-adic ''loving'' relation <math>L \subseteq U \times W</math> so as to obtain a specialized sort of 3-adic relation <math>(G \circ L) \subseteq T \times W \times V.</math>  The applicable constraints on tuples are shown in Table&nbsp;9.
 
If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq T \times U \times V</math> with a 2-adic ''loving'' relation <math>L \subseteq U \times W</math> so as to obtain a specialized sort of 3-adic relation <math>(G \circ L) \subseteq T \times W \times V.</math>  The applicable constraints on tuples are shown in Table&nbsp;9.
   −
{| align="center" cellspacing="6" width="90%"
+
<br>
| align="center" |
+
 
<pre>
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
Table 9.  Composite of Triadic and Dyadic Relations
+
|+ '''Table 9.  Composite of Triadic and Dyadic Relations'''
o---------o---------o---------o---------o---------o
+
|-
|         #  !1!   |   !1!   |   !1!   |   !1!   |
+
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
o=========o=========o=========o=========o=========o
+
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
|   G    #    T   |   U   |         |   V   |
+
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
o---------o---------o---------o---------o---------o
+
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
|   L    #        |   U   |   W   |         |
+
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
o---------o---------o---------o---------o---------o
+
|-
| G o L #    T   |         |   W   |   V   |
+
| style="border-right:1px solid black" | <math>G\!</math>
o---------o---------o---------o---------o---------o
+
| <math>T\!</math>
</pre>
+
| <math>U\!</math>
 +
| &nbsp;
 +
| <math>V\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| &nbsp;
 +
| <math>U\!</math>
 +
| <math>W\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ L</math>
 +
| <math>T\!</math>
 +
| &nbsp;
 +
| <math>W\!</math>
 +
| <math>V\!</math>
 
|}
 
|}
 +
 +
<br>
    
The hypergraph picture of the abstract composition is given in Figure&nbsp;10.
 
The hypergraph picture of the abstract composition is given in Figure&nbsp;10.
12,080

edits