Changes

Line 4,932: Line 4,932:  
Stated in terms of the conditional probability:
 
Stated in terms of the conditional probability:
   −
: P(''b''|''m'') = P(''b'')
+
{| align="center" cellspacing="6" width="90%"
 +
| <math>\operatorname{P}(\mathrm{b}|\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b})</math>
 +
|}
    
From the definition of conditional probability:
 
From the definition of conditional probability:
   −
: P(''b''|''m'') = P(''b'' & ''m'')/P(''m'')
+
{| align="center" cellspacing="6" width="90%"
 +
| <math>\operatorname{P}(\mathrm{b}|\mathrm{m}) ~=~ \frac{\operatorname{P}(\mathrm{b}\mathrm{m})}{\operatorname{P}(\mathrm{m})}</math>
 +
|}
    
Equivalently:
 
Equivalently:
   −
: P(''b'' & ''m'') = P(''b''|''m'')P(''m'')
+
{| align="center" cellspacing="6" width="90%"
 +
| <math>\operatorname{P}(\mathrm{b}\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b}|\mathrm{m})\operatorname{P}(\mathrm{m})</math>
 +
|}
    
Thus we may derive the equivalent statement:
 
Thus we may derive the equivalent statement:
   −
: P(''b'' & ''m'') = P(''b''|''m'')P(''m'') = P(''b'')P(''m'')
+
{| align="center" cellspacing="6" width="90%"
 +
| <math>\operatorname{P}(\mathrm{b}\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b}|\mathrm{m})\operatorname{P}(\mathrm{m}) ~=~ \operatorname{P}(\mathrm{b})\operatorname{P}(\mathrm{m})</math>
 +
|}
    
And this, of course, is the definition of independent events, as applied to the event of being Black and the event of being a Man.
 
And this, of course, is the definition of independent events, as applied to the event of being Black and the event of being a Man.
12,080

edits