The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> is a higher order proposition that holds for the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and fails for the rest.
+
The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> assigns the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else of that type a value of 0. Expressed in symbolic form:
−
: <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math>
+
{| align="center" cellpadding="8"
+
| <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math>
+
|}
−
The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> is a higher order proposition that holds for ordered pairs of propositions in which the first implies the second and fails for the rest.
+
The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> assigns ordered pairs of propositions in which the first implies the second a value of 1 and everything else of that type a value of 0. Expressed in symbolic form: