| Line 236: | 
Line 236: | 
|   | Throwing in the lower default value permits the following abbreviations:  |   | Throwing in the lower default value permits the following abbreviations:  | 
|   |  |   |  | 
| − | {| celpadding="4"  | + | {| cellpadding="4"  | 
|   | | align="right" width="36" | 3.  |   | | align="right" width="36" | 3.  | 
|   | | <math>\Upsilon  q  = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math>  |   | | <math>\Upsilon  q  = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math>  | 
| Line 414: | 
Line 414: | 
|   | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.  |   | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.  | 
|   |  |   |  | 
| − | {| cellpadding="2"
  | + | <math>\begin{matrix}  | 
| − | | width="36" |  
  | + | \alpha_0 f = 1             &  | 
| − | | <math>\alpha_{00} f = 1\!</math>
  | + | \mathit{iff}               &  | 
| − | | iff   || <math>f_{00} \Rightarrow f,</math>
  | + | f_0 \Rightarrow f          &  | 
| − | | iff   || <math>0 \Rightarrow f,</math>
  | + | \mathit{iff}               &  | 
| − | | hence || <math>\alpha_{00} f = 1\ \operatorname{for~all}\ f.</math>
  | + | 0 \Rightarrow f.           &  | 
| − | |-
  | + | \mathrm{Therefore}         &  | 
| − | |  
  | + | \alpha_0 f = 1             &  | 
| − | | <math>\alpha_{15} f = 1\!</math>
  | + | \operatorname{for~all}\ f. \\  | 
| − | | iff   || <math>f_{15} \Rightarrow f,</math>
  | + | \alpha_{15} f = 1          &  | 
| − | | iff   || <math>1 \Rightarrow f,</math>
  | + | \mathit{iff}               &  | 
| − | | hence || <math>\alpha_{15} f = 1 \Rightarrow f = 1.</math>
  | + | f_{15} \Rightarrow f       &  | 
| − | |-
  | + | \mathit{iff}               &  | 
| − | |  
  | + | 1 \Rightarrow f.           &  | 
| − | | <math>\beta_{00} f = 1\!</math>
  | + | \mathrm{Therefore}         &  | 
| − | | iff   || <math>f \Rightarrow f_{00},</math>
  | + | \alpha_{15} f = 1          &  | 
| − | | iff   || <math>f \Rightarrow 0,</math>
  | + | \mathit{iff} f = 1.        \\  | 
| − | | hence || <math>\beta_{00} f = 1 \Rightarrow f = 0.</math>
  | + | \beta_0 f = 1              &  | 
| − | |-
  | + | \mathit{iff}               &  | 
| − | |  
  | + | f \Rightarrow f_0          &  | 
| − | | <math>\beta_{15} f = 1\!</math>
  | + | \mathit{iff}               &  | 
| − | | iff   || <math>f \Rightarrow f_{15},</math>
  | + | f \Rightarrow 0.           &  | 
| − | | iff   || <math>f \Rightarrow 1,</math>
  | + | \mathrm{Therefore}         &  | 
| − | | hence || <math>\beta_{15} f = 1\ \operatorname{for~all}\ f.</math>
  | + | \beta_0 f = 1              &  | 
| − | |}<br>
  | + | \mathit{iff} f = 0.        \\  | 
|   | + | \beta_{15} f = 1           &  | 
|   | + | \mathit{iff}               &  | 
|   | + | f \Rightarrow f_{15}       &  | 
|   | + | \mathit{iff}               &  | 
|   | + | f \Rightarrow 1.           &  | 
|   | + | \mathrm{Therefore}         &  | 
|   | + | \beta_{15} f = 1           &  | 
|   | + | \operatorname{for~all}\ f. \\  | 
|   | + | \end{matrix}</math>  | 
|   |  |   |  | 
|   | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.  |   | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.  |