Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths. In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''. For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. | Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths. In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''. For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. |