In this definition <math>q_b = q(b),\!</math> for each <math>b\!</math> in <math>\mathbb{B}.</math> Thus, the proposition <math>\operatorname{d}x_i</math> is true of the path <math>q = (u, v)\!</math> exactly if the terms of <math>q,\!</math> the endpoints <math>u\!</math> and <math>v,\!</math> lie on different sides of the question <math>x_i.\!</math> | In this definition <math>q_b = q(b),\!</math> for each <math>b\!</math> in <math>\mathbb{B}.</math> Thus, the proposition <math>\operatorname{d}x_i</math> is true of the path <math>q = (u, v)\!</math> exactly if the terms of <math>q,\!</math> the endpoints <math>u\!</math> and <math>v,\!</math> lie on different sides of the question <math>x_i.\!</math> |