MyWikiBiz, Author Your Legacy — Sunday September 07, 2025
Jump to navigationJump to search
127 bytes removed
, 00:13, 30 July 2008
Line 1,031: |
Line 1,031: |
| The above definition of <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> is equivalent to defining <math>\operatorname{d}x_i : (\mathbb{B} \to X) \to \mathbb{B}</math> in the following way: | | The above definition of <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> is equivalent to defining <math>\operatorname{d}x_i : (\mathbb{B} \to X) \to \mathbb{B}</math> in the following way: |
| | | |
− | :{| cellpadding=2 | + | : <p><math>\begin{array}{lcrcl} |
− | | d''x''<sub>''i''</sub>(''q'')
| + | \operatorname{d}x_i (q) & = & (\!|\ x_i (q_0) & , & x_i (q_1)\ |\!) \\ |
− | | =
| + | & = & x_i (q_0) & + & x_i (q_1) \\ |
− | | <font face=system>(</font> ''x''<sub>''i''</sub>(''q''<sub>0</sub>) , ''x''<sub>''i''</sub>(''q''<sub>1</sub>) <font face=system>)</font> | + | & = & x_i (q_1) & - & x_i (q_0). \\ |
− | |-
| + | \end{array}</math></p> |
− | |
| |
− | | =
| |
− | | ''x''<sub>''i''</sub>(''q''<sub>0</sub>) + ''x''<sub>''i''</sub>(''q''<sub>1</sub>)
| |
− | |-
| |
− | |
| |
− | | =
| |
− | | ''x''<sub>''i''</sub>(''q''<sub>1</sub>) – ''x''<sub>''i''</sub>(''q''<sub>0</sub>),
| |
− | |}
| |
| | | |
− | where ''q''<sub>''b''</sub> = ''q''(''b''), for each ''b'' in '''B'''. Thus, the proposition d''x''<sub>''i''</sub> is true of the path ''q'' = ‹''u'', ''v''› exactly if the terms of ''q'', the endpoints ''u'' and ''v'', lie on different sides of the question ''x''<sub>''i''</sub>.
| + | In this definition ''q''<sub>''b''</sub> = ''q''(''b''), for each ''b'' in '''B'''. Thus, the proposition d''x''<sub>''i''</sub> is true of the path ''q'' = ‹''u'', ''v''› exactly if the terms of ''q'', the endpoints ''u'' and ''v'', lie on different sides of the question ''x''<sub>''i''</sub>. |
| | | |
| Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths. In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''. For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. | | Now we can use the language of features in 〈d<font face="lucida calligraphy">X</font>〉, indeed the whole calculus of propositions in [d<font face="lucida calligraphy">X</font>], to classify paths and sets of paths. In other words, the paths can be taken as models of the propositions ''g'' : d''X'' → '''B'''. For example, the paths corresponding to ''Diag''(''X'') fall under the description <font face=system>(</font>d''x''<sub>1</sub><font face=system>)</font>…<font face=system>(</font>d''x''<sub>''n''</sub><font face=system>)</font>, which says that nothing changes among the set of features {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}. |