A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
+
A proposition in the tangent universe <math>[\operatorname{E}\mathcal{A}]</math> is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
−
With these constructions, to be specific, the differential extension E''A'' and the differential proposition ''h'' : E''A'' → '''B''', we have arrived, in concept at least, at one of the major subgoals of this study. At this juncture, I pause by way of summary to set another Table with the current crop of mathematical produce (Table 8).
+
With these constructions, the differential extension <math>\operatorname{E}A</math> and the space of differential propositions <math>(\operatorname{E}A \to \mathbb{B}),</math> we have arrived, in main outline, at one of the major subgoals of this study. Table 8 summarizes the concepts that have been introduced for working with differentially extended universes of discourse.