| Line 1,103: | 
Line 1,103: | 
|   | With these constructions, the differential extension <math>\operatorname{E}A</math> and the space of differential propositions <math>(\operatorname{E}A \to \mathbb{B}),</math> we have arrived, in main outline, at one of the major subgoals of this study.  Table 8 summarizes the concepts that have been introduced for working with differentially extended universes of discourse.  |   | With these constructions, the differential extension <math>\operatorname{E}A</math> and the space of differential propositions <math>(\operatorname{E}A \to \mathbb{B}),</math> we have arrived, in main outline, at one of the major subgoals of this study.  Table 8 summarizes the concepts that have been introduced for working with differentially extended universes of discourse.  | 
|   |  |   |  | 
| − | <font face="courier new">
  |   | 
|   | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"  |   | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"  | 
| − | |+ '''Table 8.  Notation for the Differential Extension of Propositional Calculus'''  | + | |+ '''Table 8.  Differential Extension : Basic Notation'''  | 
|   | |- style="background:ghostwhite"  |   | |- style="background:ghostwhite"  | 
|   | ! Symbol  |   | ! Symbol  | 
| Line 1,112: | 
Line 1,111: | 
|   | ! Type  |   | ! Type  | 
|   | |-  |   | |-  | 
| − | | d<font face="lucida calligraphy">A<font>  | + | | <math>\operatorname{d}\mathfrak{A}</math>  | 
| − | | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>}  | + | | <math>\lbrace\!</math> “<math>\operatorname{d}a_1</math>” <math>, \ldots,\!</math> “<math>\operatorname{d}a_n</math>” <math>\rbrace\!</math>  | 
| − | |  | + | | Alphabet of<br>  | 
| − | Alphabet of<br>
  | + | differential<br>  | 
|   | + | symbols  | 
|   | + | | <math>[n] = \mathbf{n}</math>  | 
|   | + | |-  | 
|   | + | | <math>\operatorname{d}\mathcal{A}</math>  | 
|   | + | | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math>  | 
|   | + | | Basis of<br>  | 
|   | differential<br>  |   | differential<br>  | 
|   | features  |   | features  | 
| − | | [''n''] = '''n'''  | + | | <math>[n] = \mathbf{n}</math>  | 
|   | |-  |   | |-  | 
| − | | d''A''<sub>''i''</sub>  | + | | <math>\operatorname{d}A_i</math>  | 
| − | | {(d''a''<sub>''i''</sub>), d''a''<sub>''i''</sub>}  | + | | <math>\{ (\operatorname{d}a_i), \operatorname{d}a_i \}</math>  | 
| − | |  | + | | Differential<br>  | 
| − | Differential<br>  | + | dimension <math>i\!</math>  | 
| − | dimension ''i''  | + | | <math>\mathbb{D}</math>  | 
| − | | '''D'''  |   | 
|   | |-  |   | |-  | 
| − | | d''A''  | + | | <math>\operatorname{d}A</math>  | 
| − | |  | + | | <math>\langle \operatorname{d}\mathcal{A} \rangle</math><br>  | 
| − | 〈d<font face="lucida calligraphy">A</font>〉<br>
  | + | <math>\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle</math><br>  | 
| − | 〈d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉<br>
  | + | <math>\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}</math><br>  | 
| − | {‹d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>›}<br>
  | + | <math>\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n</math><br>  | 
| − | d''A''<sub>1</sub> × … × d''A''<sub>''n''</sub><br>
  | + | <math>\textstyle \prod_i \operatorname{d}A_i</math>  | 
| − | ∏<sub>''i''</sub> d''A''<sub>''i''</sub>
  | + | | Tangent space<br>  | 
| − | |  |   | 
| − | Tangent space<br>  |   | 
|   | at a point:<br>  |   | at a point:<br>  | 
|   | Set of changes,<br>  |   | Set of changes,<br>  | 
| Line 1,141: | 
Line 1,143: | 
|   | tangent vectors<br>  |   | tangent vectors<br>  | 
|   | at a point  |   | at a point  | 
| − | | '''D'''<sup>''n''</sup>  | + | | <math>\mathbb{D}^n</math>  | 
|   | |-  |   | |-  | 
| − | | d''A''*  | + | | <math>\operatorname{d}A^*</math>  | 
| − | | (hom : d''A'' → '''B''')  | + | | <math>(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})</math>  | 
| − | |  | + | | Linear functions<br>  | 
| − | Linear functions<br>  | + | on <math>\operatorname{d}A</math>  | 
| − | on d''A''  | + | | <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n</math>  | 
| − | | ('''D'''<sup>''n''</sup>)* = '''D'''<sup>''n''</sup>  |   | 
|   | |-  |   | |-  | 
| − | | d''A''^  | + | | <math>\operatorname{d}A^\uparrow</math>  | 
| − | | (d''A'' → '''B''')  | + | | <math>(\operatorname{d}A \to \mathbb{B})</math>  | 
| − | |  | + | | Boolean functions<br>  | 
| − | Boolean functions<br>  | + | on <math>\operatorname{d}A</math>  | 
| − | on d''A''  | + | | <math>\mathbb{D}^n \to \mathbb{B}</math>  | 
| − | | '''D'''<sup>''n''</sup> → '''B'''  |   | 
|   | |-  |   | |-  | 
| − | | d''A''<sup>•</sup>  | + | | <math>\operatorname{d}A^\circ</math>  | 
| − | |  | + | | <math>[\operatorname{d}\mathcal{A}]</math><br>  | 
| − | [d<font face="lucida calligraphy">A</font>]<br>  | + | <math>(\operatorname{d}A, \operatorname{d}A^\uparrow)</math><br>  | 
| − | (d''A'', d''A''^)<br>  | + | <math>(\operatorname{d}A\ +\!\to \mathbb{B})</math><br>  | 
| − | (d''A'' +→ '''B''')<br>  | + | <math>(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))</math><br>  | 
| − | (d''A'', (d''A'' → '''B'''))<br>  | + | <math>[\operatorname{d}a_1, \ldots, \operatorname{d}a_n]</math>  | 
| − | [d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>]  | + | | Tangent universe<br>  | 
| − | |  | + | at a point of <math>A^\circ,</math><br>  | 
| − | Tangent universe<br>  |   | 
| − | at a point of ''A''<sup>•</sup>,<br>  |   | 
|   | based on the<br>  |   | based on the<br>  | 
|   | tangent features<br>  |   | tangent features<br>  | 
| − | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>}  | + | <math>\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}</math>  | 
| − | |  | + | | <math>(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))</math><br>  | 
| − | ('''D'''<sup>''n''</sup>, ('''D'''<sup>''n''</sup> → '''B'''))<br>  | + | <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>  | 
| − | ('''D'''<sup>''n''</sup> +→ '''B''')<br>  | + | <math>[\mathbb{D}^n]</math>  | 
| − | ['''D'''<sup>''n''</sup>]  | + | |}<br>  | 
| − | |}  |   | 
| − | </font><br>
  |   | 
|   |  |   |  | 
|   | The adjectives ''differential'' or ''tangent'' are systematically attached to every construct based on the differential alphabet d<font face="lucida calligraphy">A</font>, taken by itself.  Strictly speaking, we probably ought to call d<font face="lucida calligraphy">A</font> the set of ''cotangent'' features derived from <font face="lucida calligraphy">A</font>, but the only time this distinction really seems to matter is when we need to distinguish the tangent vectors as maps of type ('''B'''<sup>''n''</sup> → '''B''') → '''B''' from cotangent vectors as elements of type '''D'''<sup>''n''</sup>.  In like fashion, having defined E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>, we can systematically attach the adjective ''extended'' or the substantive ''bundle'' to all of the constructs associated with this full complement of 2''n'' features.  |   | The adjectives ''differential'' or ''tangent'' are systematically attached to every construct based on the differential alphabet d<font face="lucida calligraphy">A</font>, taken by itself.  Strictly speaking, we probably ought to call d<font face="lucida calligraphy">A</font> the set of ''cotangent'' features derived from <font face="lucida calligraphy">A</font>, but the only time this distinction really seems to matter is when we need to distinguish the tangent vectors as maps of type ('''B'''<sup>''n''</sup> → '''B''') → '''B''' from cotangent vectors as elements of type '''D'''<sup>''n''</sup>.  In like fashion, having defined E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font>, we can systematically attach the adjective ''extended'' or the substantive ''bundle'' to all of the constructs associated with this full complement of 2''n'' features.  |