Line 1,084: |
Line 1,084: |
| This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> | | This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> |
| | | |
− | Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: | + | Finally, the tangent universe <math>\operatorname{E}A^\circ = [\operatorname{E}\mathcal{A}]</math> is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features <math>\operatorname{E}\mathcal{A},</math> and this fact is summed up in the following notation: |
| | | |
− | : E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] = [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>], | + | : <p><math>\begin{array}{lclcl} |
| + | \operatorname{E}A^\circ |
| + | & = & [\operatorname{E}\mathcal{A}] |
| + | & = & [a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n]. \\ |
| + | \end{array}</math></p> |
| | | |
− | thus giving the tangent universe E''A''<sup> •</sup> the type
| + | This gives the tangent universe <math>\operatorname{E}A^\circ</math> the type: |
− | ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> +→ '''B''') = ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''')).
| + | |
| + | : <p><math>\begin{array}{lcl} |
| + | (\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) |
| + | & = & (\mathbb{B}^n \times \mathbb{D}^n, (\mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B})). \\ |
| + | \end{array}</math></p> |
| | | |
| A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus. | | A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus. |